NEXT GENERATION REAL-TIME SYSTEMS:
INVESTIGATING THE POTENTIAL OF
PARTIAL-SOLUTION TASKS
THESIS

Robert Edmund James Caley
Captain, USAF

AFTT/GCS/ENG/94D-01

19941228 009

LM'

DEPARTMENT OF THE AIR FORCE o P
AIR UNIVERSITY l\}o/mgo“féﬁ%“ i
AIR FORCE INSTITUTE OF TECHNOLGGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-01

NEXT GENERATION REAL-TIME SYSTEMS:
INVESTIGATING THE POTENTIAL OF
PARTIAL-SOLUTION TASKS
THESIS

Robert Edmund James Caley
Captain, USAF

AFIT/GCS/ENG/94D-01

Approved for public release; distribution unlimited

AFIT/GCS/ENG/94D-01

: NEXT GENERATION REAL-TIME SYSTEMS:
INVESTIGATING THE POTENTIAL OF PARTIAL-SOLUTION TASKS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University
In Partial Fulfilment of the

Requirements for the Degree of Aceession For P
) . BTIS QRA&I w

Master of Science (Computer Science) DTIC T4B 0

Unanvowneeq 0
Juztificationm]

By

Disbeibuticns
Avelliahility Oelden

Robert Edmund James Caley, B.S.

Captain, USAF Avail ewmdfos
Bhst | Spocial
!
December 1994 %’ \ g

Approved for public release; diStribution unlimited

Acknowledgements

This thesis would not have been possible without the help of several individuals:

First and foremost I would like to thank my wife Kendle and my two sons Kyle and Brett for
putting up with my preoccupation and repeated absences during the last eighteen months. Their patience
and understanding allowed me to focus on research iss‘ues, while their subtle hints kept me in touch with
the reality of family life.

Second, I would like to thank my research advisor Major Gregg Gunsch, who took the time and
effort to teach me the art of scientific research and guide me safely towards the light at the end of the
tunnel. Also, I would like to thank my two thesis readers Lt Col William Hobart and Major Paul Bailor
and my sponsor Major Peter Reath for their time and effort. To all of you, I would like to say "your
insights and comments made the research something I can be proud of."

Third, I would like to thank my sponsor organization WL/FIPA, Wright Laboratories, Flight
Dynamics Directorate, Wright-Patterson AFB, OH, for providing the motivation and funding to make this
research possible.

Finally, a special thanks to some of my classmates Steve, Rich, Doug, Cathy, KK, Mike, Rob,
Jordan, Chuck, Al, Bill, John, Keith, Dan, and Dave all of who helped make the difficult times at AFIT

bearable.

Table of Contents

ACKNOWICAZEIMENLSooneireeecenieiinireteteceeeeieessnsssasscstsssssessersassessestasesssbessesessensssssssssesesssessosesss i
Table Of COMIENLSccvevrmiueirerieretensurrirsereeseeeesessssessstsssssessssstsessrsssanrssssssssssssssessssssasersssssssrssasnns iii
List of Figures............cccverereerencnns Sttt et R st s e a et e et a s T ses e s s e e sseTR e SR e e e et e R e eb e e vasennaerts vii
LISt OF TADIES ...coucerueieerieerrirceiesietreteeees st senee e sesens e nsassesesesaassssnssssssssntasssesesesnssseseassssassnnsserersons X
ADBSITACE «..uovvveeerrervessassansasssssessessesssssessens assassssssassasssassasssnsssesssssassanesssssssssssssssssssassasssssssnessssassasesessasses xi
I - INOQUCHION. c.cucieresiesivistenirseesssissesentsassesreessssrcesaesresessescntsssacnssssiesssasassssensasssasesenteserassssssorssosssens 1-1
1.1 Problem Statement............ovvereecrnmiicsessersenesssereerssssesssssssssssssosssesssssssesssssssssssessssssssesessens 1-1
1.2 Thesis ODJECLIVEccceererreererserrersenseesessessesrensasssenessessessessinsessessosssssessesssseesssssonsonsssessssnes 1-3
1.3 ADPIOACH. ...ttt ettt s sesr et e e e e s e s e ssa et saan s e e s ennenenaens 1-3
1.4 THeSiS OVEIVIBWc.eccerreeerrirencnerieecertisesassssesnsssssestsssstssassessasessesssssssnsessassssssessessnsnn 14
II - An Overview of Real-Time Intelligent SYSIEIMSccccvvrerreesiereseserrerennensessessessnenssssssossssssssesenens 2-1
2.1 Basic Requirements of Real-Time SyStems...........cccccvcvrerrresrrenreresrenssereseresesesenerssnsesssens 2-1
2.2 Scheduling Techniques for Meeting Real-Time Requirements veserarsenesarsaneseanestanas 2-1
22.1 Cyclic Executive SChedulingcccvveererenrereneerenrirensessenssnesnsnsssseessssessens 2-3
2.2.2 Fixed Priority Scheduling............cccoceevevenevererirenrrrnressessssesssesseesenesenesensansenens 2-4
223 Scheduling Sporadic TasKS.........cccccecerererereerrersernersesssresssseesesssssesesesesensinnens 2-5
224 Dynamic Deadline Driven Scheduling...........ccoeeveerveeeernenrcceverennrenesnsncsans 2-5
2.3 Next Generation Real-Time SYStEMS........c.cccecerurereereressessnseesesssssssssossesssssssssssssessssssnssasns 2-6
2.3.1 Spring ArChIiteCtI®..........cecueueeercrerensseresssnsessssssssssssssressssesssssesesssssesesens er2-7
23.2 Cooperative Intelligent Real-Time Control Architecture.............cocvreveeeeee 29
2.4 Partial-Solution Tasks and Next Generation SYStemsccovvverereeererrenresessserssssseseenns 2-11
25 Summary........ooo.. sttt 2-13
IIT - Design Approach, Assumptions, and Key DeciSions............coveeeeereeeererrreensiosseeesssesseieessenssesseseens 3-1
3.1 High-Level ReSearch OBJECHVE c.cvvvv.vvvrvrersvessreessssssssssesesssssssssssssnssssssssssssssssssssssssne 3-1
3.2 Pre-RuBHIME CIAIMNS «....cvvvvveeeeumsresceeeseseesssasessssssnsssssssssssssssssssssmsnsssssssssssssssssssssasnensnees 3-1
3.2.1 Rate Monotonic Scheduling Algorithm reeeenrsrrseeseenranseseasasnnesenseans 32
3.22 The Generic Avionics Platformccceveeeeceerercevrnnsasesneeressesesesnssesnsens 3-3
3.3 Runtime ClaMS.......c.cocoiivinirinsieeieemsennerensensseseseseisessssssesessssssnsssnsssasssssssssesssssssssesssesen 33

3.3.1 Randomly Generated Task Datac.ccoceervecrenecnmenrensimsessinsseosiesiensessssosses 34

3.3.2 Performance MEASUIEScc.cocervceerrecrerersnesersessecsssssssssssessessasstsssasssssssnssnens 34
3.3.3 CyClic EXECULIVE.ccccveerecrericcccismsiciiensssissstsssssisisessssssssnssssssnsessssssessoses 35
3.4 Design DECISIONSccovveerriniecrssnnenmnisissiinsisisisesiisssissssssssssssssssesssssaes 3-6
3.5 DeSign ASSUMPHONSccoveveeeeeremrcrerrecnsseresseseissstssssssssarsosssissssssesessesesiesssssnssessssessansns 3-7
3.6 SUINIMATYoveeecreeeeiereeesnseesecneraeseseeessescasonssesostasstssarestossssassstssssssssssassssssesssssnenessorssssbass 39
IV - Implementation of SUpPOrt SOftWare ... bbb ae 4-1
4.1 Pre-Runtime SCheUIETccccvrvrererrnsniiinccnicsnsceissnnisinsts st ssssssssensssssasssessssnes 4-1
411 ASKESD ettt st st e s et 4-2
4.1.2 SCREedUIELISP...cccvriieriirrecereceeeeceensrenessssenesseessnesensessensenessesessarsnsseoesacanens 4-2
4.1.3 PHOLLSP oottt ssas e s s b bes 4-4
4.1.4 tranSIate.liSP....cvrriireererrerererstrectsnrnescsnesasesenassteas s ne s sesnt st e nn s easnentens 4-4
4.2 RUDGME EXECULIVE. ...ccveeveeeeieieeieeeeieereereesessessessessesessessesstsanssassssasessonsonssssssessessonsesssssssses 4-4
42.1 Package Timer, Executive, and Cyclic Schedule...........cccoeiniriiesnreniiseanins 4-5
422 Package Sporadic_Generator..............ccecvvevvmsisnsuisresessscsnesssensiosmssesseesnesenss 4-7
423 Package Sporadic_Scheduler...........cooeerieirnerceneetrineeeeecrecseeercsesenseseeanes 4-7
424 Package GeneriC_Taskc..occccevmrcemrriniesinsiiscssisninsessesisonsssssnssssseesessessenss 4-8

425 Package Task_INtEIFACE......ccceurrrrrererrernrcsenccerscetsisensessiecsasnsncesrssssassesens 4-10

426 Package Display......c.ccccverrerrersenrenccssonsssnnissisestssessssiosssssssesssssssessessens 4-11

4.3 SUIMIMATYcoevreenrrereniereensesansessasasnsssssessstssenesamsasstonssssesstsassosssssssssensssssessssssssssssssnsosssens 4-12
V-Test Plan and RESUILScocueeeereriieireeeeerreeesnraneenrssenessssorsssssssonsansssssossssssossssasssssossssssssssssnosassss 5-1
5.1 TESEPLANooveuvievreeerrereiiererssienerssessssssarsesssssssernsacesssenssntasestsasensasensasesest sosseeassassssasstenens 5-1
5.1.1 Pre-Runtime Schedulability and Maintainability Demonstration.................. 5-1
5.12 Runtime RobBUSMESS TESL........ccccereerecrmsmrcersisiisinsssnisseossssessssnssrossssssssssssssesns 52
5.2 Chronological TeSt RESULLScceeerreeeencreerceerreeerreneenee et rsssssssescensbsesssssnnsssssssssnans 5-3
5.2.1 Infeasible GAP Schedule...........cccccovreverecerreieererersnrassessosssneseesssnenssasssesesens 5-4
5.2.2 Feasible GAP Schedulecccovmveemmrcenenrrnecericsensennseeeescseeteseneesessesnesesens 54
5.2.3 Increased Requirement GAP Schedule...........ccoeevicrecrisirieencnnnrorsnnnsinsnsssenes 5-5
5.24 Initial Runtime Test ReSultsccccnrivecisnscnssmnisimsenisismesssstisiesssssssessssnes 5-6

5.2.5 Analysis of Cyclic-Quality RESULLS..........ccereerieeernecemsrereecnesensserasssssessasssases 5-11

5.2.6 Extended Runtime Test RESULLScorvreierreraerererecsneccrseeessesnesesseseeneecrecennes 5-13

5.3 Summary Of RESUIS........ccocvveeirerieeeerrrrereerresesssseesesassesenssssassesasesasasonessensssssssssnesasssnes 5-16
VI - Conclusion and RecOmmENdAtions............eceeeeeereemreenionensissinccsssssisisssssssssessssssscssssssssesssssssssioesens 6-1
6.1 CODCIUSIONS ..ovvvrivnnevnninnsrisssssnsisnsss st st s st s 6-1
6.2 Recommendations for FURIe WOrK............ccccerieeceneseecnenrnsssssosisssessssnsssssnssessnssssssssessesses 6-2

iv

Appendix A - Random Task REQUITEIMENES....c...cevvceinurirniineniiietiietinrecntretssssessssessessssrsnsssssessasesssnes A-1

AL DESCHIPHON ..c.ccvrueuireenereerseeeeeenetseseseetsteessssetsssesseseatsssassentessssssseatsssasassrassasasssssesanssases A-1
A2 Random Task REQUITEMENLSccceueuceeererenirenerrecieneersesessesesesnonsassesetsassensessssenssssnans A-l
Appendix B - Pre-Runtime RESUIES .evvreveeeeeeereeeneeeeeeesmeesessmeessesecesseasessesesesesesssesassessesessessesmaesesseens B-1
B.1 DESCIIPLIONc.cevrrenerreneanrsreneanasesastssessssensessscsessssasssssesssssssstressesssasssserssanssassensssssssassssen B-1
B.2 Original GAP Scheduleccccoceirueinieeenecieetrnaeneneetsesesesesteseesesesseseassssersenssssssassesae B-1
B.3 GAP Schedule with Modified Graphic-Displayccocereeeereesieesieresiescerieessesvesseesnees B-1
B.4 GAP Schedule with Modified Graphic-Display and Maintainance Requirements.............. B-2
Appendix C - Initial RUNHME RESUILS.......ccccereemeeerreeeenrieeenecrriersesseseeseesssssesesessessssssessssassesnessessessassessss C-1
C.1 DESCIIPLION....covierererreererieesierereesensessiessesestassentessessessssesssssessassansessessessesseseessasensassesserssenes C-1
C.2 Tabular ReSUILS.......cccoeeeirrceteirececececertretsriesssessssessesesasssssessssesssssssssessesssssssssessesessans C-2
C.3 Conservative Results - MEtTiC 1cccvvveiveerenenircereeninenenereesessectessseessrassasesssssssanns C-3
C.4 Conservative Results - MEtTIC 2cccoveeerveeeriecninenierecenineecsrenssesescstrssesesssssssessssssessens C-6
C.5 Linear Results - MELTIC I ittt sre et s s sen e s s et ss s e snsansone C9
C.6 Linear Results - MEtriC 2coceueerivcrirrriennrtrseieeeressssessssssssssssssesssnssssesssssssesssnsssessens C-12
C.7 Optimistic ReSUILS - MELTIC Lc.vvvveerrerceereicecnnencriseeicrissesssesseesessnesseessssssessesssssssensssses C-15
C.8 Optimistic ReSUlts - MELrIC 2ccceecvrveeierereeeerieeteisrensesesssesessenesssssesnsssesssssesssssesseseenes C-18
Appendix D - Extended RUDtME RESULLSccceereeeieeerriecerrnseresnssensrersssisscsessesssessssssesssssssnssesessenes D-1
D1 DBSCIIPHOcoveueneeeencretreeerernsssreerssssssessssssssrssssesmassessseseressonssssassssessasssssessssssossnsessnen D-1
D.2 Tabular RESUILS......cccoeeereeeeeeereeneeerenetnrsnseeersnsessessssssssssssstesssssssssserssssnssessesssessassnssenen D-2
D.3 Conservative Results - MetriC Locoeereereenncreeiesseneessssesssssessssesenssessnssnenns D-3
D.4 Conservative Results - METIC 2c.ceeuruerereueseneecrennnssseserssessssssssseessssesssnsssssssseses D-6
D.5 Linear ReSults - MEtriC Lc.ccveereimeiereneereeseseeeseeseveseseenenesssessssssnsessasesssssones D-9
D.6 Linear Results - MEtriC 2ccermereeneieneisesseserereersnsssissssssesnssssssesesssssssssssssssenns D-12
D.7 Optimistic RESUILS - MELIIC 1 ...c.cveererreereereieeeiriiniseeseesereernenesesnesnssssssssssssessessssesseeseen D-15
D.8 Optimistic ReSULES - MELTIC 2......ccvceievrerrirerreseressesessesseereessssessssessossssssesssssssssensssssssssescsns D-18
Appendix E - Group Runtime RESULLS...........coeerrreereiererernresiesesssssssssesessssossseesesssssessasssssssssssssssessessons E-1

E.1 DESCIIPLION ...oeeeceeereraiieicenerireace e iere st reacsesoee et seateescrensnennssensassnsesaessrasssnsesasssesensassasessnses
E.2 Initial Duration RESUIS.......ccccoeeerrrercerrietienrceeecrcetnsret s seeseseesesasacsesnssesatssesssscsssnnessans
E.3 Initial Frequency Results ..
E.4 Initial Response RESUILScccoecceerreercrenrreceneesseeerisastrsosssesestsseressssssessnsssstsssssssasssessses
E.5 Extended Duration RESULLS...........cecerererreereureererseeessrssessesesnsssensssssasssssasssssssssssasesenssnns
E.6 Extended Frequency RESUIScco.eeueieveeeneeerserneeisiseeaeeeseseseseesessnsssssssassssssnns

E.7 Extended Response RESUILS........ccuveeueeueereeminreeeriesiieseeeseesnssessecsesessssssessesssnsossensnssesssensen

Appendix F - Selected SOUICe Code..........cccrrrrrrrnrrririnniisnseeresessssessssesssssesssesssessessesesssssssssessesessesses

F.1 DESCTIPHONceceeeeercceenrreeecrnesneasstrssessesessessssesssassssnsssssestssessesessensnssessarsssessssessssssenes
F.2 RUNtME EXECULIVE......cccrirrireererrisenernesenssiisseessessssssessssssensosessesessosssnssssssssasesssssnsessosanes
F.2.1 Timer - Package SpecifiCation...........ccceereeueeeerirsreseereeseeeeeesessesneeseseessessessns
F2.2 Timer - Package Bodycccocerevnreneennnnientinssiessensmsssssesessessessssssassessens
E23 Executive - Package SpecifiCationcccceceeeeeererceeinrseevesrcereeneeessessessens
F24 Executive - Package Bodycccooeeevimevieisrnrnensenseersssesssnscersessesssrassesennes
F2.5 Generic_Task - Package SpecifiCation...........c.ccuvmvvervrnereneeeeresineeieesseseesenns
F2.6 Generic_Task - Package Bodycccccvvverureisseecesesssecssnsnsseseenssesenene
F.3 Pre-Runtime SCHEdUIEToccveoirererccetresreetsiee e cetseesenesessesesssnsssssssasssssesssssessnsnsases

F.3.1 SChedUIE.LISP...cccieercrerertiiitrienrrnerernneesssesssesessessonsasesssssssesensssessesssnssssnenes
F3.2 8SKISP.c.cotrcireeie s serente e eressresnaestssesensensnessrssssasssassnssessassssasssns

..

vi

Figure

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure B.1:
Figure B.2:
Figure B.3:
Figure B.4:
Figure B.5:

Figure B.6:

List of Figures

Page
Real-Time System with Intelligent Control............ccocevverererrnsenrennnennessseseesesessssesserens 2-7
CIRTCA - Cooperative Intelligent Real-Time Control Architecture.........ccovreereverrererreseenes 2-10
Example Scheduling REqUIrEMENt............ccoveveeereeerercrenerersreecseecraeesssessssssssesssesssnssssessssenss 2-11
All-Or-Nothing Solutions to Example Scheduling Requirementccoeerevrececrecrncaesaens 2-12
Partial-Solution Solutions to Example Scheduling Requirementccceevereeeeernennnne. 2-12
Task Template and Sample Task...........ccceereeeeeeeririeeieerieeeerteeeseressssesssessesesssessessesassssnns 4-2
Sample Output From Print-Schedulecoeeerereererireeereceeeeeceeseeeseesee e ssessesesssessens 4-4
Runtime System (Top-Level ATChiteCture)........c.ccceveereererrenenressensrsererssessesssssesssssessesssesenns 4-5
Underlying Ada TasKcoreeeereecrersnierermsensessssesnssessasmsessmsssnssesessssessessssessassssassssassasssnens 49
Interactive DiSplay OULPUL...........cceccevrrerrerreererrresenrrresressserassessssssssssssessesssesassssensssnessssssons 4-12
Conservative/Linear/Optimistic Performance CUIVeS.........cccvveververereerersvsessersssesessessessesens 5-2
Feasible GAP SChedUllecoccceiieeetrcerrierrnsrecrnsesarsesessnsssessesesssssensssssessensesessossseses 5-4
Conservative-Frequency MELTIC 2........cvvveeeeeiereereeteeeeirsteesstessessseessessssesssssesessesssssessenses 5-7
Conservative-Frequency MetriC L..........cvcvveeeveerereerieneirineiensesensesessesssssssessssesssnsssensnsanes 59
Optimistic-Frequency MetriC L...........ccccieerencrcnnrecrnreeresernsesssasesssssssstssssssssesssessssesens 5-10
Stop-Work COde SEGMENLccocevreceinirernreteerrenriesersessrssssssessssessssssssenssssnsseserssnonesens 5-12
Partial-Solution Performance Loss Due to Implementation.............ccoeeceveeeverercsieresenenene 5-13
Extended Linear-Frequency MEtriC L.........ccocvveeiieceneeeeeeerriessesereseesreesnssessesessessessens 5-15
Infeasible GAP SCHEAUIEoccccccemiireeeeereeieerenetcetreetsneers e ssesassnessessesseseasasnssreses B-1
GAP Schedule with Modified GraphiC-DiSpPIaycoeevrereeereeeeeerirrecenseereseereeseesessessessnsns B-1
Modified GAP with One Maintenance Task...........c.ccceererererernriresserernsesseesssassessssessssersenes B-2
Modified GAP with Two Maintenance Tasks..........cccvereererrrnrereesssrssssrsessesensseressensannes B-2
Modified GAP with Three Maintenance Tasks..........ccecveeeerreerrerererserseessrarsesessssesssesaseasnenes B-3
Modified GAP with Four Maintenance and One Processor...........ceeruereurrnvererrrereeneeecnns B-3

vii

Figure B.7:
Figure C.1:
Figure C.2;
Figure C.3:
Figure C4:
Figure C.5:
Figure C.6:
Figure C.7:
Figure C.8:

Figmé C.9:

Figure C.IO:
Figure C.11:
Figure C.12:
Figure C.13:
Figure C.14:
Figure C.15:
Figure C.16:
Figure C.17:

Figure C.18:

Figure D.1:
Figure D.2:
Figure D.3:
Figure D 4:
Figure D.5:
Figure D.6:
Figure D.7:

Figure D.8:

Modified GAP with Four Maintenance and Two ProCessors........ccceevevvivineeresssieesseessseen B4

Conservative-Duration Metric L..........ovvceeiviirineeininecinincnnenismenessncncsesesssesias N C3
Conservative-Frequency Metric 1 .. C4
Conservative-Response MEtriC L.......ooovveecereeececeerirrerrnreeeeseressresesseseesasseseessesssssenesnes C-5
Conservative-Duration MEtriC 2..........ccc.ecvrrrerrreennsversenseresssrssensssnsnesssssssssssessasseessssassenes C-6
Conservative-Frequency MEtriC 2ccceerieeeerrvenerseeniersssreseessessssssessesssssssssssssesssaessens C-7
Conservative-Response MEtriC 2.......ccoeereecrinienennsceercnennicaeesassessssessssessssessessssessssissen C-8
Linear-Duration MetriC L.........ccoiiimiinnniiiniisssesmsionsicassensssns C9
Linear-Frequency MEtriC 1ovcveevereneninineneneiessesssessessssesienesssssssssssssssssssssssssessensanens C-10
Linear-Response MEtriC L.........cvoiivicciiiicctnrereiveeeesseesessseesassssssnssessssssssssnsessesssisansnsssans C-11
Linear-Duration Metric 2.......cocceerreeererencecrecnrrceneneronnessesiesesaeeseness eeeestrsessaesanssenes C-12
Linear-Frequency MEtriC 2cococevcerrieenirenceerceeeecesssesessaesssssnsssenssesessessessssessssesasans C-13
Linear-Response MetriC 2..........cccoevceerueeneecereesnenseseeeneeessessssssesenes e C-14
Optimistic-Duration MEtriC L........ccoiiiiiinmeeereeeeerrreteeersssoeeereeeesecassnssnonssssnasesssses C-15
Optimistic-Frequency Metric 1 .. C-16
Optimistic-ReSponse MEtriC L........c.vvevrieerrcemreseerersentrnnsrssessssessssesassessssssesssressesssnsssaes C-17
Optimistic-Duration MetriC 2........c.cvceeeeeririceereceereertreessssessesssessessssessesssssessssssssesssssesses C-18
Optimistic-Frequency MetriC 2ccoeeeevereeererrereiereseessressereenes mssesstusssnssnasnassusssassisnes C-19
OptimistiC-ReSPONSE MELIIC 2........coveeeeereecteenectectectecersaeseesiessesesssesessessessossessessessessossenes C-20
Conservative-Duration Metric 1c.ococoivrcienneerensiinenssnseessesessesseessssesesessssesensssssens D-3
Conservative-Frequency MEtriC Lcococviireieeieecsereeeeneeetecneessesssesesssssesisssessesesssesenses D-4
Conservative-Response Metric L et ne et st en b e esasaanereese e e e nreneenens D-5
CONSEIVALVE-DUFAHON MEAEIC 2 ... eeereeeessesesesessesssseesessenesesessesseseesesenees D6
Conservative-Frequency MEtriC 2ccocvvveiveverrrnenennesseressersesssssssssssessessssesasssesessases D-7
Conservative-Response Metric 2ot resaens e D-8
Linear-Duration MEtriC 1cocceeececvieimenniriiriserenrrsecnesnenssisssrensessssesssscsseresassssssssssessesses D-9
Linear-Freqﬁency MELTIC 1 ..iirierirneeeeesectnessssessesesaesessesessessesessensssesesessessesessessensaserens D-10

viii

Figure D.9: Linear-Response MetriC L........cccciiiiincnicinnininininnisniecrcseencsaesesereceescsssessessssseesein D=11
Figure D.10: Linear-Duration MEtriC 2cccecvrerrerrerserinssessnecsssnsessessssseessssessersrsssssssssssssessssssssessenes D-12
Figure D.11: Linear-Frequency MEtTiC 2cccevreerieerrvereresrssresiseressesmnirassssesassssssssesssssssssssessansnss D-13
Figure D.12: Linear-Response MEtTIC 2........ccccevrrrereirenenrennesssesesresesessinsssesessessssssesssssssssessessssesraesaes D-14
Figure D.13: Optimistic-Duration Meﬁ'ic L sttt a s a s sao e s e s neanane D-15
Figure D.14: Optimistic-Frequency MEtriC 1ccccveericieneecsereransivenenressarsessssssssssessssssessssssesessene D-16
- Figure D.15: Optimistic-ReSponse MELrIiC L.......cccevceerirccirrnreescrnencermrecesnsnnsessesessessssesasssssesessssassessensas D-17
Figure D.16: Optimistic-Duration Metric 2ccceoeiereiineecrnceirneseessnsssresernsssersesssssssrsssssesissnnsaens D-18
Figure D.17: Optimistic-Frequency MEtriC 2cccccovieuirirenenrirnseressesesiesessestoressessesssessessssesssssssessasens D-19
Figure D.18: Optimistic-ResSponse MEtriC 2.......cccccervcceeiirercenenceeresnesrssesessissssessesesiasessesessessssssssssesens D-20
Figure E.1: Initial Group Duration Results (Random)............c.ceecerereeerecernenrerisecseresssseesssssionsssersessasens E-2
Figure E.2: Initial Group Duration Results (GAP)...........ccccccrerrceeerirncrcennesmsernsssssmecssssssssssssssssnssnns E-2
Figure E.3: Initial Group Frequency Results (Random)cccvveeererernineieneesnemnnrsneresrssesaressessnsserens E-3
Figure E.4: Initial Group Frequency Results (GAP).............cccorererrerrerveerereerrnsseseseerssessssssesesssscsons E-3
Figure E.5: Initial Group Response Results (Random)...........ccceceeevierernervnrnssinessesessersssessssessosssssiness o8
Figure E.6: Initial Group Response Results (GAP)ccceveirerecerrerecrnenessinseressenssssesssesosessssesnenes E-4
Figure E.7: Extended Group Duration Results (RANAOM)ce..eereemmeeeesecesereseessmsensssssesssseseens E-5
Figure E.8: Extended Group Duration Results (GAP)...........cccoeveeerererenrresrseressssesesesssssesssesesssssesenssessnes E-5
Figure E9: Extended Group Frequency Results (Random) et e iemeesese e E-6
Figure E.10: Extended Group Frequency Results (GAP)...........ccccceevevrrreeerrireeeensersesesssssesenesesssescsensnans E-6
Figure E.11: Extended Group Response Results (Random)............cccoceemveeveceseresesesesesesereessnesensssesseses B=7
Figure E.12: Extended Group Response Results (GAP)ooooeoovocorssscessossssseseesesen BT

List of Tables

Table Page
Table 3.1: GAP Timing REQUITEIMEINLS.c.ccorevererrreeserercamrareereerresesesessstssssssssssssscsssessassstssssssssesssssssans 3-3
Table 3.2: Modified GAP Timing ReQUITEMENLS...........ccerererrrreerracsmrsesersesesseseesesssseesseceseseeessesmenceseses 3-8
Table 5.1: GAP Maintenance REQUITEMENLScccveceervererreeseesressesracesmeseesanssesssessessssssssssssssssseosssosans 5-5
Table 5.2: Results from GAP Maintenance ReqUIrEMENLS...........ccccveveererrecreresteseeserseecessassnssessessessessess 5-5
Table 5.3: Runtime RESUILScccveeerrrrereerermmsceeneerentnereneneesssacstsesiseisesissesessessssessssisssssssssssssnsssnsas 5-6
Table 5.4; Extended Test RESUILS.coeceeeeiecreereeirercreecemeectracsesetseiscsssssssesssssssssinsssessesessssssass 5-14
Table A.1: Random Task REQUITEIMENLSc.ccceeceirerrererrurrersnsrereessssassnssessisasssssscsesssesesssnsasssssassessssssases A-1
TADIE C.1: KEY o.uueiiceireeeicrrcerceteie et crise e seseasssaesaessasesesssesaessnssasssassnsaassemssassomssuessussassbnsassssnssssassnans C-2
Table C.2: Runtime RESUILScouvrrrecerririirccniiicinicnstiicstiiitssessissessmssessssassasssssnssnssssssssssessssnssssssesns C-2
TADIE D.1i KEY .ottt s e sree e s s ssnsssessassne s s s saseasesassnssssssansssssasssessanssnssasssassossns D-1
Table D.2: Extended Runtime ReSUILSccvmucermmmicennmieninneiinsininccsisiesssistissesssisasssessesssssssscsssssens D-2
TADIE E.Li K ...ueiiiiiciieecreretrctnene et ccsesessaessnecaessssssesstesnssasasnssasssansnssssassessasanesssssssssesanessesssssssasassses E-1

Abstract

While the cyclic executive and fixed-priority scheduling strategies have been sufficient to handle
traditional real-time requirements, they are insufficient for dealing with the complexities of next-
generation real-time systems. New methods of intelligent control must be developed for guaranteeing on-
time task completion for real-time systems that are faced with unpredictable and dynamically changing
requirements. Implementing real-time processes as partial-solution tasks is one technique that may be
beneficial. This type of task, when combined with intelligent control, has the potential for increasing pre-
runtime schedulability, systcni maintainability, and runtime robustness. This research investigates the
benefits of partial-solution tasks by experimentally measuring the g:hange in performance of 11 simulated
real-time systems when converted from all-or-nothing tasks to partial-solution tasks. Results from the
experiments indicate that partial-solution tasks have the potential to decrease missed deadlines and
increase a systems' average solution quality. The results also suggest that best performance gains can be
achieved using Optimistic partial-solution tasks where the bulk of solution quality is achieved early during
task execution. The ﬁamewmk used in this research was developed to measure the general case
performance characteristics of partial-solution tasks. As a by-product, the research resulted in a

framework that can also be used to measure specific case characteristics.

NEXT-GENERATION REAL-TIME SYSTEMS:

INVESTIGATING THE POTENTIAL OF PARTIAL-SOLUTION TASKS

I - Introduction

The relatively new field of Real-Time Artificial Intelligence (RTAI) marks the convergence of
two areas of computing research: Aurtificial Intelligence (AI) and Real-Time Systems. The need for
RTAI has developed because Al efforts are moving toward more realistic domains requiring real-time
response, and real-time systems are moving toward more complex applications requiring intelligent
behavior.

Traditional techniques for developing intelligent systems often result in unpredictable runtime
performance and thus are unsuitable for incorporation into real-time systems. In turn, real-time systems
often employ inflexible scheduling strategies that are incapable of handling the dynamic nature of
intelligent systems.

To meet the requirements of next generation real-time systems, methods for dealing with
dynamic and unpredictable environments need to be developed. Partial-solution tasks provide one method
for maintaining system integrity under less than desirable conditions. The robustness and flexibility of
these tasks can make it possiblé to meet strict deadline constraints in the face of limited resources and

dynamically changing requirements.

11 Problem Statement
Real-time computer systems can be classified into three general categories: hard real-time, soft
real-time and complex real-time:
® Hard real-time systems must produce computationally correct results while satisfying
stringent timing constraints (deadlines). No value is added to a hard real-time system if

its tasks fail to meet their deadlines. In some applications, failure can even result in
catastrophic loss of life or property [Xu, 1991:10].

* Soft real-time systems differ from hard real-time systems in the extent to which failure
of tasks to meet deadlines impacts the system. In soft real-time systems, the value added
by a task’s successful completion diminishes as latency increases.

¢ Complex real-time systems contain combinations of both hard real-time tasks and soft
real-time tasks. Failure to meet deadlines in complex systems can result in a range of
consequences from catastrophic to inconsequential.

Hard real-time systems often operate in well-defined environments, where task requirements and
performance characteristics are deterministic in nature, thus allowing system designers to account for all
possible resource combinations prior to implementation. Once recorded, these combinations are
scheduled using well-founded static (pre-runtime) scheduling techniques. Next-generation RTAI systems
on the other hand,

. exhibit a great deal of adaptability and complexity, making it impossible to
precalculate all possible combinations of tasks that might occur. This precludes use of

static scheduling policies common in today's real-time systems. We need new

approaches for real-time scheduling in such systems, including on-line guarantees and

incremental algorithms that produce better results as a function of available time

[Stankovic, 88:101.

Rarely is it necessary for next-generation real-time systems to meet all their deadlines [Stankovic,
1993b]. While this is a desirable goal, the resource requirements for accomplishing it are often
impractical and sometimes impossible [Whelan, 92]. Because of this, the current emphasis for next-
generation real-time systems is on building intelligent runtime controllers that can adapt system
performance by trading solution quality for time

The ultimate goal of the intelligent controller is to achieve 100 percent solution quality. A
system quality of 100 percent means that the controller is able to schedule all resource requirements
without missing a single deadline or timing constraint. However, due to the dynamic and unpredictable
nature of next-generation real-time systems, there may not exist enough processing power to solve all
problems simultaneously [Whelan, 1992 and Raeth, 1994]. Because of this, some tasks will be stopped
before completion, others will be scheduled with limited resources, and still others will not be scheduled at
all. Therefore, the actual goal of the intelligent controller is to generate schedules that optimize the total

system performance by minimizing missed deadlines and maximizing the solution quality of individual

tasks.

1-2

Using missed deadlines and solution quality as a discriminate, wekca‘n divide real-time tasks into
two categories: all-or-nothing and partial-solution. All-or-nothing tasks achieve 100 percent solution
quality when allowed to execute for their total required duration. Any execution time short of the required
time results in a zero percent solﬁtioﬁ quality and a missed deadline; Partial-solution tasks, on the other
hand, are capable of generating an acceptable partial quality solutions, even when faced with limited
resources or stopped prior to completion. Such tasks appear to be better suited for manipulation by next-

generation real-time systems that use intelligent control techniques.

1.2 Thesis Objective

This research investigates the benefits associated with developing a real-time system using
partial-solution techniques. Due to time constraints, resource constraints, and a lack of domain-specific
information, it focuses on three potential benefits: increased pre-runtime schedulability, increased pre-
runtime maintainability, and increased runtime robustness. Furthermore, these characteristics are
examined in an environment void of domain-specific knowledge. While domain knowledge is the key to
intelligent scheduling, it is both difficult and expensive to gather. By examining the domain-independent
properties of partial-solution tasks, it is sometimes possible to detect situations where system performance

can be increased without the need for costly domain-specific information.

13 Approach

The approach used in this research is one of example and experimentation. Pre-runtime claims
of increased schedulability and maintainability are supported using two examples. The first claim of
increased schedulability is supported by converting a non-schedulable task set into a schedulable one by
substituting partial-solution tasks for one or more all-or-nothing tasks. The second claim of increased
maintainability is supported by allowing a search-based scheduler to automatically adapt the schedule
generated in example one, in response to changing requirements.

Runtime claims of increased schedulability and robustness are investigated by experimentally
measuring the effect of random sporadic task arrivals on several simulated real-time syétems. During

these experiments, the real-time systems are evaluated using only all-or-nothing tasks, only partial-

1-3

solution tasks, and a mixture of all-or-nothing .and partial-solution tasks. Results from these experiments

are analyzed to determine if partial-solution techniques are more robust than all-or-nothing techniques.

1.4 Thesis Overview

This chapter provided a brief overview of the background, objectives, and approach used in
deveioping this research. Folldwing chapters address each of these subjects in more detail. In Chapter II,
results of a literature review outline current issues and research applicable to the design and development
of next-generation real-time systems. Chapter III draws upon the background information and provides a
design methodology for comparing the performance characteristics of all-or-nothing and partial-solution
tasks. Chapter IV describes the implementation of the support software used during the pre-runtime
demonstration and the runtime experiments. In Chapter V, results from the experiment are presented and
analyzed to determine if actual results reflect expected results. Finally, in Chapter VI, some conclusions
are drawn about the actual benefits of partial-solution tasks and recommendations are made for follow-on

work.

14

II - An Overview of Real-Time Intelligent Systems

2.1 Basic Requirements of Real-Time Systems
Real-time systems are those systems in which the correctness of the system depends not only on
the logical results of computations, but also on the time at which the results are produced [Stankovic,
1993b]. Examples of some real-time systems include aircraft guidance and control, hospital monitoring
and care, and nuclear power plant control. In general, real-time systems need to meet four basic
requirements of timeliness, predictability, dependability, and simultaneousness [Hoogeboom, 1992:26-28].
¢ Timeliness - Traditionally, real-time tasks have been classified based on the degree to which
failure to meet timing requirements affects the system. For hard tasks, timing violations can result in
a disrupted control process, catastrophic failure, and even loss of life. For soft tasks, timing violations
can cause undesirable effects, but do not result in fatal errors. A timely system must be able to meet

all hard requirements while minimizing the impact of missed soft requirements.

¢ Predictability - Real-time systems should always be predictable. Given a set of inputs, the
system's response to those inputs should be readily traceable from the system specification.

¢ Dependability - Real-time systems must be trustworthy. First, they must satisfy their

specifications. Second, they must remain in a predictable state even when their runtime environment

does not correspond to the specifications.

¢ Simultaneousness - Real-time systems must be able to meet timing requirements even when task

resource requirements overlap.
22 Scheduling Techniques for Meeting Real-Time Requirements

Satisfying the timing requirements of real-time systems demands the scheduling of system

resources according to some well-understood algorithms so that the timing behavior of the system is
understandable, predictable, and maintainable. It is important to note that real-time system scheduling
differs from scheduling problems usually addressed in operations research. In most operations research
problems, the goal is to find an optimal static schedule that minimizes the re‘sponse time for a given set of
tasks [Stankovic, 1988:13]. For real-time systems, the ultimate goal is to find a static schedule that meets
all resource requirements and timing deadlines.

Scheduling strategies for real-time systems can be classified as one of two types: pre-runtime or

runtime. In pre-runtime scheduling, also known as off-line scheduling or static scheduling, the schedule

2-1

for processes is computed off-line and requires that the major characteristics of the processes within the
system be known in advance. In runtime scheduling, also known as on-line scheduling or dynamic
scheduling, the schedule for processes is computed on-line as processes arrive.

The perceived advantages of pre-runtime scheduling include significant reductions in the amount
of runtime resources required for scheduling and context switching and a strong guarantee of satisfying
deadlines. The perceived disadvantage is an inflexibility to adapt to chaliging or unpredictable events.

The perceived advantages of runtime scheduling over pre-runtime scheduling include: no
necessity to know the major characteristics of the system in advance, flexibility, and easy adaptabilty to
changes in the environment. There are two major disadvantages with the runtime approach for satisfying
timing constraints in a hard real-time system:

The first problem stems from the basic assumption that the scheduier does not have any

knowledge about the major characteristics of processes that have not yet arrived in the

system. If the scheduler does not have such knowledge, then it is impossible to

guarantee that all timing constraints will be satisfied, because no matter how clever the

scheduling algorithm is, there is always the possibility that a newly arrived process
possesses characteristics that make the process either miss its own deadline, or cause

other processes to miss their deadlines.

The second problem is the fact that the amount of time available for a runtime scheduler

to compute schedules on-line is severely restricted, and the time complexity of most

scheduling problems is very high. There are too many different possible combinations

of times and orders in which processes may arrive and request use of system resources

for the scheduler to compute at runtime, especially in complex systems where there are a

large number of processes and resources. [Xu, 1991:134]

However,

... the robustness of modern and next-generation real-time Al systems, especially in such

decision support arenas as combat aircraft cockpits, require a similarly robust dynamic

task scheduling method. While current scheduling technology may view this as an

intractable dichot only, it is still an issue that must be addressed. We can not let the

difficulty of the problem cause us to ignore it. It's solution is too urgent [Raeth, 1994].

Because of the disadvantages, the majority of real-time systems have been developed using pre-
runtime scheduling. Furthermore, they have been developed using one of two scheduling techniques:

cyclic executive scheduling or fixed-priority scheduling.

22.1 Cyclic Executive Scheduling. A cyclic executive is a control structure for explicitly
interleaving the execution of réal-time processes. The interleaving is done in a deterministic fashion so
that execution timing is predictable. The process interleaving is non-preemptive and is defined using a
pre-runtime cyclic schedule. The cyclic schedule describes a sequence of actions that need to be
performed during a fixed period of time. The cyclic executive plays the cyclic schedule in an endless loop,
repeating the schedule tasks until told otherwise. The execution of a feal-time system can be divided into
one or more cyclic schedules that correspond to different modes of operation. The éyclic executive
switches between cyclic schedules in response to real-time events.

The basic building block of the cyclic executive is the periodic process. A periodic process
consists of an action repeated at regular intervals. For scheduling purposes, a periodic process can be
defined as a triple (c, d, p) , where c is the process computation time (duration), d is the process deadline,
and p is the process period. The length of the cyclic schedule is equal to the lowest common multiple of
the periods of its constituent processes.

There arevthree advantages in using a cyclic executive for structuring a real-time application.
First, cyclic executives make it possible to predict the entire future history of the system. Since the entire
execution schedule is predetermined, it is clear that all response requirements can be met. Second,
because no task can ever -be interrupted during its execution, there is no requirenient for application
preemption. Thus overhead can be kept low. Finally, because of determinism in the schedule, it is
possible for each periodic task to exhibit a very low deviation in the size of the interval between activation
and completion [Locke, 1992:6]. A characteristic which is commonly referred to as low jitter.‘

There are two basic disadvantages in using a cyclic executive. The most serious disadvantage is
the application fragility. Most cyclic schedules are carefully hand-crafted to meet a specific set of timing
requirements. Generally, they do not react well to change. Introducing new functionality can often result
in timing requirements that exceed the capabilities of the original cyclic schedule. Another problem is in

the cyclic executive's handling of processes with execution times which are long compared to the period

of the highest rate cyclic task. The most common solution to this problem is to arbitrarily break the long

task into multiple short tasks by manually inserting preemption pointsA [Locke, 1992:7]. While this solves

the problem, it also adds to the fragility of the system.

222 Fixed-Priority Scheduling. A fixed-priority executive is a. control structure for
interleaving the execution of real-time processes. Unlike the cyclic executive, it does not use a
predetermined schedule to decide which process to execute. Instead, it makes the decision at runtime
based on the relative importance of processes as speciﬁed by a set of predetermined (fixed) priorities.
Prior to the early seventies, our ability to characterize the predictability of fixed-priority systems was weak
{Locke, 1992:46]. In 1973, however, Liu and Layland published a paper that described the use of rate
monotonic scheduling as a paradigm for designing fully predictable hard real-time (fixed-priority) systems
[Liu, 1973].

Rate monotonic scheduling is simply the use of a preemptable, fixed-priority executive to execute
a set of periodic processes whose priorities are ordered monotonically increasing with respect to the
frequency of the process. Liu and Layland proved in their paper that assigning priorities in this manner
results in optimal schedules for the class of all fixed-priority scheduliﬁg algorithms.

There are several advantages in using fixed-priority scheduling. The principal advantage is the
| predictability of the entire process set when faced with changing requirements. Since the predictability is
based on knowledge of total processor utilization, determining schedulability for additional processes only
requires calculating the maximum allowed processor utilization, and comparing it to the actual processor
utilization of the new system. If the maximum utilization is not exceeded, then the process set is
schedulable and process priorities can be assigned. Another advantage of the rate monotonic approach is
that it normally does not require system designers to decompose processes at arbitrary points tb fit within
system timing requirements. Rather, it relies on the runtime executive to preempt the process wherever
and whenever required. The final advantage of rate monotonic scheduling is its degree of Stabi]ity.
Simply exceeding an allocated utilization does not always resﬁlt in failure of a process or the system. As‘
long as the total system utilization remains below the max1mum scheduling bound, the system will

continue to meet its timing constraints.

The principal disadvantage of fixed-priority scheduling is its inability to map the many different
execution orderings of processes onto a rigid hierarchy of prion'ties. Another problem with fixed-priority

scheduling is that it is only able to produce a limited subset of possible schedules. This severely restricts

its ability to satisfy timing and resource constraints at runtime [Xu, 1991:137]. Finally, fixed-priority

scheduling does not define a tight timing constraint on the actual completion time of a task, other than
ensuring that it completes prior to the end of its period. Because of this characteristic, there can be

significant jitter generated for processes with long periods.

2.2.3 Scheduling Sporadic Tasks. Both the cyclic executive and fixed-priority scheduling
strategies were developed around the periodic process. Another type of process that is becoming more
prevalent in real-time systems is the sporadic process. A sporadic process, also known as a dynamic
process or an asynchronous process, exhibits non-periodic arrival times. To schedule sporadic processes
using a cyclic executive or fixed-priority scheduling strategy, designers are required to translate the
sporadic process into an equivalent periodic process. The period of the new process is calculated from the
worst case inter-arrival time of consecutive sporadic processes. Two problems exist with translating
sporadic processes into periodic processes.

First, sporadic translation can result in extremely inefficient schedules. Periodic resources, pre-
allocated for the sporadic process, use valuable system resources even when no sporadic processes actuaily
arrive. This increases the amount of system resources that must be made available. In this era of
demands for affordable systems, it is necessary to find ways to decrease the need for system resources.
This can somtimes be acheived using more complex scheduling fechniques.

Second, the translation process does not guarantee that all sporadic processes will meet their
timing constraints. It is always possible that ihe actual worst case inter-arrival time of the sporadic

processes will exceed the value used to generate the periodic server.

2.2.4 Dynamic Deadline Driven Scheduling. Another method for handling periodic and
sporadic processes is a runtime strategy called deadline driven scheduling. Using this method, priorities

are assigned to processes according to their deadlines: the closer the deadline, the higher the priority. At

2-5

any instant, the process with the highest priority (shortest deadline) will be executed. Liu and Layland
proved that deadline driven scheduling can result in an optimal schedule when presented with a process
set that is schedulable using some fixed-priority assignment [Liu, 1973:61].

Deadline driven scheduling has two advantages over fixed-priority scheduling. First, it can
increase system utilization bounds from 69 percent to 100 percent. Secondly, it does not waste resources
on sporadic events that do not occur. Generally speaking, a combination of fixed-priority scheduling or
cyclic executive scheduling with deadline driven sporadic scheduling appears to produce the most benefits

[Liu, 1973:61].

23 Next Generation Real-Time Systems

Three major forces are pushing real-time systems into the next generation: movement of real-
time systems toward more complex applications requiring intelligent behavior, movement of artificial
intelligent systerns toward more realistic domains requiring real-time response, and rapid advances in
hardware. Next-generation, critical, real-time systems will require greater flexibility, dependability, and
predictability than is commonly found in today's systems.

The DARPA Neural Network Study notes that there is a general trend toward increasing problem
complexity and specificity, as well as an increasing need for task-independent and autonomous software
[Gschwendtner, 1988:262]. Current practices for guaranteeing real-time performance are inadequate to
handle the increased complexity and dynamic requirements of next-generation real-time systems. New
methods need to be developed to produce predictable behavior while providing enough flexibility to deal
with failures, non-deterministic environments, and system evolution.

One method currently under investigation throughout both the real-time and Al communities is
intelligent real-time control. Intelligent real-time control can be defined as a computer control system
that can adapt its scheduling policies to meet changing operational requirements. Typically, such a
system would use both pre-runtime and runtime scheduling strategies to guarantee real-time requirements.
Pre-runtime scheduling would be used to guarantee the response times of some set of critical processes,

while runtime scheduling would be used to trade the solution quality of less important tasks for time, to

satisfy the timing constraints of more important tasks. Figure 2.1 illustrates the components of a next-

generation real-time system with intelligent control.

Environment

Al Component

|Roal-Tima Componentl 3

Figure 2.1: Real-Time System with Intelligent Control
Two research architectures, the Spring Architecture and the Cooperative Intelligent Real Time

‘Control Architecture, have been addressing the issue of intelligent real-time control.

2.3.1 Spring Architecture. The Spring Architecture is an intelligent real-time control
architecture being developed by the Department of Computer and Information Science at the University of
Massachusetts. Spring is being developed to challenge several basic assumptions upon which traditional
real-time systems are built. It advocates a new paradigm for providing on-line dynamic guarantees to
certain types of processes.

Spring's new paradigm is based on the concept of reflection. Reflection is defined as the process
of reasoning about and acting upon the system itself. Part of this action may be altering the system's own
structure from within. Traditionally, real-time systems perform computation acts to monitor sensors,
pgrform calculations, and control actuators. If, in addition, there is computation about the monitoring
processes, quality of calculations, and dependability of actuators, then there is meta-level structures and
reflective possibilities. Proper use of reflection can result in systems with increased flexibility,

understandabilty, analyzability, and dependability [Stankovic, 1993b:2].

2-7

Reflection in the Spring Architecture is provided via a multi-level, multi-dimensional scheduling
strategy [Stankovic, 1993b:6). To achieve the multi-level design, tasks are divided into three categories:

e critical - Critical tasks must always make their deadlines, otherwise catastrophic system failure
may occur. :

¢ essential - Essential tasks are necessary to the operation of the system, have specific timing
constraints, and will degrade system performance if timing constraints are not met. If an essential
task misses a deadline, it will not cause catastrophic failure.
* non-essential - Non-essential tasks may or may not have timing constraints. Failure to meet
non-essential timing constraints results in little or no loss in system performance. Background tasks,
long range planning tasks, and maintenance functions fall into this category.
The multi-dimensional scheduling strategy provides different guarantees for each task category. Critical
tasks are provided the greatest guarantee by using a priori knowledge and pre-runtime scheduling
techniques that pre-allocate system resources. Due to the large number of essential tasks and to the
extremely large number of task combinations, it is not possible, nor desirable to reserve resources for
essential tasks. Rather, these tasks are provided a lesser guarantee through a dynamic runtime planning
scheduler that provides acceptable performance based on available resources. In some circumstances, it is
necessary to pre-allocate resources for essential tasks. These tasks have extremely tight deadlines and
cannot meet timing constraints if scheduled using the planning scheduler. Non-essential tasks are
executed only when they do not affect critical or essential tasks.
On-line guaranteés for essential rtasks have a very specific meaning within the Spring
Architecture:
... it allows the unique abstraction that at any point in time the operating system knows
exactly which tasks have been guaranteed to make their deadlines, what, where and
when spare resources exist or will exist, a complete schedule for the guaranteed tasks,
and which tasks are running under non-guaranteed assumptions. However, because of
the non-deterministic environment, the capabilities of the system may change over time,
so the on-line guarantee for essential tasks is an instantaneous guarantee that refers to
the current state. Consequently, at any point in time we have a macroscopic view that
all critical tasks will make their deadlines and we know exactly which essential tasks
will make their deadlines given the current load [Stankovic, 1993a:9].
The main advantage of the Spring approach is it separates deadlines from importance. Critical

tasks are of the utmost importance and are guaranteed (within reasonable constraints) for the lifetime of

2-8

the system. Essential tasks are assigned a level of importance that varies in response to changing system

requirements. The planning scheduler combines the importance level of each essential task with a priori

knowledge to generate a schedule that maximizes system performance with respect to current needs.

232 Cooperative Intelligent Real Time Control Architecture. The Cooperative Intelligent
Real Time Control Architecture (CIRTCA) is an intelligent real-time control architecture developed by
David Musliner to support his doctoral work at the University of Michigan [Musliner, 1993].

Musliner perceives an apparent conflict between the nature of Al and the needs of real-world,
real-time cbntrol systems. Traditional real-time systems 'operate in well-defined environments; Al
systems do not. Most Al systems have been developed without much attention to the re.sourée constraints
that motivate real-time research. Many of these Al systems attempt to approximate intelligent reasoning
by using search techniques that are slow, costly, and unpredictable; To achieve predictable intelligent
real-time control, researchers have focused either on restricted Al techniques or reactive systems that
retain little of the power of traditional AL

CIRTCA is designed to retain the power of traditional AI while guaranteeing hard real-time
requirements. To accomplish this, it uses an Al subsystem (AIS) to reason about task-level problems that
require powerful but unpredictable reasoning methods, while a separate real-time subsystem (RTS) uses
its predictable performance characteristics to deal with control-level problems that require gnaranteed
response times. Figure 2.2 illustrates the separation of components in the CIRTCA design.

The basic building block of the CIRTCA design is the test-action-pairs or TAPs. A TAP consists
of a fixed set of tests (or preconditions), a set of actions, worst-case timing data, and a list of resource
requirements. Multiple TAPs are combined at runtime to form a cyclic schedule that is used by the RTS.

The AIS runs asynchronously with the RTS and reasons about task-level goals in hopes of
generating an optimal set of TAPs. The AIS is designed to sacrifice completeness at the task-level in
order to achieve predictability at the TAPs or control-levél. The AIS passes a TAPs list to the’ scheduler,
which builds a cyclic schedule by reasoning about the maximum period of the TAPs, their worst case

execution times and resource needs, and the resources available from the RTS. If the scheduler is unable

2-9

to build a successful schedule, it reports a failure to the AIS, which must adjust the TAPs list to relax
scheduling constraints.

When the scheduler passes a guaranteed schedule to the RTS, it also passes a list of unguaranteed
TAPs. The RTS runs through the guaranteed TAP schedule, checking the tests for each TAP and firing
those TAPs whose tests return true. If a TAP test returns false, the RTS uses the time schedule for the
guaranteed TAP to search for and invoke one or more of the unguaranteed TAPs. Transition from one
schedule to another is accomplished when the RTS encounters a check-for-new-schedule TAP that

returns true.

Environment

[Sensor] [Actuator]

Real-Time Subsystem Al Subsystem

TAP Schedule |E Interface Engine
Limited World Model | World Model

Figure 2.2: CIRTCA - Cooperative Inht.élligent Real-Time Control Architecture

© Abasic assumption of the CIRTCA design is that the system can remain in a safe set of states for
an indeterminate amount of time without violating its control-level goals. All changes to RTS must be
made via the AIS. At no time is the cyclic schedule interrupted or a TAPs execution preempted. If
interruptions are required, then they must be scheduled in advance by the AIS and handled in a polled
manner. A drawback of this design requirement is that it can lead to degraded or inappropriate

performance, if the AIS is slow in generating new schedules.

2-10

David Musliner identifies the primary advantage of the CIRTCA design as the asynchronous
operation of both the AIS and the RTS. By operating in this fashion, the AIS need not conform to the
rigid performance restrictions of the RTS and can bring to bear the full power of traditional AT
techniques.

However, by requiring the AIS to handle all scheduling requirements, CIRTCA has bound the
effectiveness of the real-time subsystem to the response time of the Al subsystem. This characteristic is
precisely the reason why real-time AI designers have been forced to use restrictive or reactive techniques

in the first place.

24 Partial-Solution Tasks and Next Generation Systems

When combined in a next-generation real-time system, partial-solution tasks and intelligent
control interact jointly to enhance system performance. Partial-solution tasks enhance performance by
providing the intelligent controller with more opportunities than would be available using all-or-nothing
techniques. The intelligent controller enhances the system performance by determining which partial-
solution tasks to degrade in order to maximize potential benefits. For example, consider the task schedule

presented in Figure 2.3.

——— .

Time

Figure 2.3: Example Scheduling Requirement

Tasks T1 and T2 represent static; tasks that have been scheduled using pre-runtime scheduling
techniques. Task Tiporadic represents a sporadic task that must be scheduled using a runtime dynamic
scheduler. If the processes are implemented as ali-or-nothing tasks then only two situations can be
considered. In the first case the sporadic task can be ignored, resulting in 100% benefit from the static
tasks but 0% benefit from the sporadic task. In the second case the sporadic task can be scheduled,

resulting in 100% benefit from the sporadic task but 0% benefit from static tasks. (See Figure 2.4.)

2-11

Tsporadlc

Time Time

Figure 2.4: All-Or-Nothing Solutions to Example Scheduling Requirement

V

By implementing the processes as partial-solution tasks the number of solutions is increased from two to

six. The four additional solutions, shown in Figure 2.5, allow the scheduler to schedule all three tasks at

Tsporadic

Time Time

Figure 2.5: Partial-Solution Solutions to Example Scheduling Requirement

less than 100% benefit. This capability results in a decrease in the number of missed deadlines and
introduces the possibility of increased total benefit to the system. The additional solutions also increase
the scheduling complexity and require the use of a domain dependent intelligent controller to determine
the optimal solution.

The benefits shown in the example above also apply to pre-runtime scheduling. It is possible to
use the same process during pre-runtime scheduling if the requirements of Teporadic are known in advance.
In that situation, partial-solution tasks make it possible to generate a feasible static schedule for all tasks,
when none would exist using all-or-nothing techniques. Further benefits can also be envisioned during
software maintenance. In this situation, Tspwradic Could represent an additional requirement that was not

considered during system development. Adding a new all-or-nothing task to the system could require the

2-12

procurement of an additional processor. Adding a new partial-solution task would degrade system
performance, but allow the system to meet its requirements without the need for additional hardware.
There are some drawbacks to using partial-solution techniques. First, it is highly unlikely that all
processes can be implemented as partial-solution tasks. In fact, in some systems, there may be no process
that can be implemented as a partial-solution task. Second, the increased number of opportunities will
also increase the complexity of the runtime scheduling process. As a consequence, it may take the
intelligent controller longer to generate the solution, since more schedules must be evaluated. Finally,
there may be some cost associated with the conversion of all-or-nothing tasks to partial-solution tasks.
These costs could include increased execution time, increased memory requirements, and increased
software complexity. However, even with the drawbacks, there is still a compelling need to evaluate the

capabilities of partial-solution tasks.

2.5 Summary

This chapter has described the difficulties associated with guaranteeing the four basic
requirements of mission-critical real-time systems. While the cyclic executive and fixed-priority
scheduling strategies have been sufficient to handle traditional real-time requirements, they are
insufficient for dealing with the complexities of next-generation real-time systems. New methods of
intelligent control must be developed for guaranteeing real-time systems when faced with unpredictable
and dynamically changing requirements. Implementing real-time processes as partial-solution tasks is
one technique that may be beneficial in the development of next-generation systems that use intelligent
control. In the following chapter a design methodology is presented for exploring some of the potential

benefits associated with partial-solution tasks.

2-13

I - Design Approach, Assumptions, and Key Decisions

Chapter I provided some background information on the design and implementation of next-
generation real-time systems. This chapter draws upon that information and provides a high-level design
for implementing a system with the specific objective of comparing the performance characteristics of
partial-solution and all-or-nothing tasks. Following the high-level specification, some basic design

assumptions are stated and several possible design decisions are discussed.

31 High-Level Research Objective

The primary hypothesis presented in this research is that partial-solution tasks have the potential
for increasing the schedulabiﬁty, maintainability and robustness of next generation real-time systems. To
defend this hypothesis, this research shows that partial-solution tasks can:

e increase the pre-runtime schedulability of some real-time systems by generating feasible
schedules that could not be produced with all-or-nothing tasks,

e increase the maintainability of the real-time system by automatically adapting pre-runtime

schedules to scheduling constraints rather than hand-crafting schedules and tasks each time

requirements change, and

e increase the runtime schedulability and robustness of the real-time system by retaining some

profit from tasks that are unable to meet their full processing requirements due to preemption by

more important tasks.

It is beyond the scope of this research effort to generate a mathematical proof supporting the

claims present in the paragraph above. Instead, this thesis demonstrates the potential benefits of partial-

solution tasks through example and experimentation.

32 Pre-Runtime Claims

It can be argued that the pre-runtime claims of increased schedulability and maintainability are
intuitive. The very design of partial-solution tasks makes ‘it possible for them to produce results even
when faced with limited resources. However, it is important that this research demonstrates a practical
example of these claims since they provide the foundation on which less intuitive runtime claims are

based.

3-1

The first claim of increased schedulabiﬁty is supported using a single example that converts a
non-schedulable task set into a schedulable one by substituting partial-solution tasks for one or more all-
or-nothing tasks. The second claim of maintainability is supported by allowing a search-based scheduler
to automatically adapt the schedule generated in example one, in response to changing requirements.
Both examples are conducted using theorem I of the rate-monotonic scheduling algorithm and a set of

tasking requirements known as the Generic Avionics Platform.

32.1 Rate Monotonic Scheduling Algorithm. The rate monotonic scheduling algorithm
(RMA) was selected as the pre-runtime scheduling strategy for two reasons. First, rate-monotonic
scheduling prdvides a simple mathematical technique for verifying the scﬁedulability of penodlc
aperiodic, and synchronous tasks. Secondly, there is an abundance of literature describing its application
to hard real-time systems.

Theorem 1 of the RMA guarantees that in the worst case conditions, all deadlines will be met if
the processor utilization of the periodic tasks does not exceed a predetermined bound. Processor
utilization can be calculated‘ by summing the execution times of each task divided by the respective period
of each task. This function is shown in equation 3.1. 69.3 percent is the lower bound on feasible

processor utilization.

Ci C2 Ca %
X= —4=++=— < nQ"-1
T: T2 Ta (2)

where G.1)

X is the processor load
Ci is the execution time of process i

Ti is the period of process i
n is the number of processes

The upper bound is 100 percent, which decreases monotonically to 69.3 percent as the number of tasks
approaches infinity.

As long as the processor load is below the maximum utilization bound, the task set is always
schedulable. Additional theorems have been developed that can guarantee schedulability for task sets with
utilization levels higher than the limit presented in theorem 1 [Liu, 1973]. However, these theorems are

not required to support the claim of increased schedulability provided by partial-solution tasks.

3.2.2 The Generic Avionics Platform. The Generic Avionics Platform (GAP) was
developed by personnel from IBM, the Naval Weapons Center, and the Software Engineering Institute to
determine how to use the Ada language in a hard real-time system. It presents a set of generic tasks
expected in modern fighter weapon systems [Locke, 1990:118]. These tasks, which are outlined in Table
3.1, represent a set of non-dynamic scheduling requirements that is non-schedulable using theorem 1 of

the rate-monotonic scheduling algorithm, since their total processor utilizétion exceeds the maximum

bound for 13 tasks of 0.711.
Table 3.1: GAP Timing Requirements
GAP Timing Requirements

Task Name | Period | Duration | Utilization | Total Utilization
Contact Mgnt 0.025 0.005 0.200 0.200
Tracking Filter 0.025 0.002 0.080 0.280
Target Update I | 0.050 0.005 0.100 0.380
Nav Update 0.059 0.008 0.136 0.516
Hook Update 0.065 0.002 0.031 0.547
Graphic Display 0.080 0.009 0.113 0.660
Target Update T | 0.100 0.005 0.050 0.710
Status Update I 0.200 0.003 0.015 0.725
Steering Cmds 0.200 0.003 0.015 0.740
Stores Update 0.200 0.001 0.005 0.745
Keyset 0.200 0.001 0.005 0.750
Nav Status 1.000 0.001 0.001 ~ 0.751
Status Update IT 1.000 0.001 0.001 0.752

The GAP was selected for two reasons. First, it is a small set of requirements that can be easily
handled by theorem I of the rate monotonic scheduling algorithm. Secoadly, it closely resembles the type
of system being developed by the sponsor of this research. While more realistic timing requirements

would have been desirable, they are currently not available from the sponsor.

33 Runtime Claims

Supporting the mntime claim of robustness is not as simple as supporting the two pre-runtime
claims of schedulability and maintainability. The dynamic nature of next-generation real-time systems
make it impossible to determine a priori the actual runtime characteristics of a system. Generating a

single example that proves a system meets all its ‘deadylines would require a simulation that generates all

3-3

possible combinations of periodic and sporadic tasks. Therefore, this thesis will not try to prove that
partial-solution tasks are more robust than all-or-nothing tasks. Rather, it will show a general trend of
increased robustness by experimentally measuring the effect of random sporadic task arrivals on 11
simulated real-time systems.

One of the simulated real-time systems consists of a cyclic schedule generated from the GAP
timing requirements described in Table 3.1. The other 10 systems consist of the cyclic schedules
described in Appendix A. The duration and importance for these schedﬁles were generated using a

. pseudo-random number generator. The random number generator was™ also used to generate importance

values for GAP tasks.

3.3.1 Randomly Generated Task Data. The decision to use randomly generated schedules
and randomly generated sporadic tasks is necessitated by the nature of next-generation real-time systems.
Each system is composed of a set of tasks that have varying computational requirements, predictability
requirements, and timing constraints. Because of this, it is impossible to develop a single set of tasks
that represents all real-time systems. Statistically or randomly generating periodic and sporadic tasksvéan
produce false or misleading results. However, it can also generate meaniﬁgful results when no additional

domain-specific information is available.

332 Performance Measures. Before proceeding, it is important to discuss the issue of
performance measures. Michael Whelan describes four performance measures for real-time systems:
speed, responsiveness, timeliness, and graceful adaptation [Whelan, 1992).

* Speed. 'Th1s performance measure refers to the number of tasks executed per unit time.
Speed is highly dependent upon the processing hardware. Generally, more and faster processors
increase this performance measure" [Whelan, 1992].

* Responsiveness. "Responsiveness refers to the ability of a system to take on mew tasks
quickly. Operating in a rapidly changing environment, a responsive system perceives new
developments early enough to compose and execute responses, possibly at the expense of ongoing
tasks that may be delayed or even abandoned” [Dodhiawala, 1988].

* Timeliness. "This measure characterizes the system's ability to conform to task priorities.

Assuming that not all tasks can be finished by their deadlines, a timely system is one that finishes
as many as possible” [Whelan, 1992].

34

o Graceful Adaptation. "This refers to the ability of the system to reset task priorities
according to changes in the resource availability andfor demand and workload" [Shamsudin,
1991].

. Speed, responsiveness, and timeliness are not used in this research since they are primarily
indicators of processing power and scheduler capabilities. Graceful adaptation, on the other hand,
indicates the robustness of a system by measuring a change in system performance due to increased or
unexpected resource requirements. Generally, a system that exhibits only a small decrease in system
performance under increased workload will be considered more robust than one that exhibits a iarge
change under the same conditions. |

1t is difficult to accurately determine a single metric for measuring the graceful adaptation of a
real-time system. The separation of tasks into different levels of importance requires the scheduler to pass
judgment on the relative benefits of each task. For example, it is difficult to determine which is better,
executing a single high-importance task of long duration, or executing several medium-importance tasks
of short duration. The selection of an appropriate metric may vary drastically depending on domain-
specific requirements. This research proposes four generic metrics for measuring graceful adaptation in
terms of average system quality. These four metrics are: percent of missed deadlines for periodic tasks,
percent of missed deadlines for sporadic tasks, average solution quality for periodic tasks, and average

solution quality for sporadic tasks.

333 Cyclic Executive. With the performance measures identified, the design effort must
now focus on developing a runtime system for gathering performance data. Using the Spring Architecture
and CIRTCA as models, we can determine that this system should include a pre-runtime scheduler, a
runtime scheduler, and a dynamic task generator.

The cyclic executive method of controlling runtime tasks has been selected for this phase of the
demonstration because it provides tighter control over the start and stop times of individual tasks than can
be achieved using a rate-monotonic approach. Fixed-priority schedules, while easy to create using the
rate-monotonic scheduling algorithm, do not allow accurate control over task execution. Just because a »
task has a high priority (based on its short period) does not mean that it should always preempt more

important tasks with long periods. Furthermore, the knowledge representation used in the cyclic schedule

35

can provide a runtime scheduler with significantly more information than is availaBle using a single fixed-
priority.

Conversion of the GAP fixed-priority schedule to a cyclic schedule is a simple two-step process.
First, the length of the major cycle is found by calculating the least common multiple of all the task
perlods Second, the cyclic schedule is generated by simulating the acﬁons of the fixed-priority scheduler
for a period equal to the major cycle. The resulting product is a timeline that specifies the start and'stop
times of each task. It is unnecessary to convert the random schedules since they are automatically
generated in a cyclic format. Descriptions of the random cyclic schedules and GAP cyclic schedule are
provided in Appendix A. |

A reactive, non-intelligent, importar,lce-based scheduler has been selected for scheduling the
sporadic tasks activated by the dynamic task generator. This method was selected over a planning
scheduler because it decreases the dependencies between the scheduler's capabilities and the system
performance. Increased dependencies could make it difficult to determine if increased robustness is due
to the partial-solution tasks or a result of some knowledge embedded in the planning scheduler.
Additipnally, because the importance, duration, and response times of sporadic tasks will be generated

randomly, no domain information will be available to support a planning scheduler.

34 Design Decisions

Based on sponsor requiréments, scoping requirements, background research, and software and
hardware conslraints it was necessary to make several key design decisions. This section lists these
decisions and describes the reasons they were made.

A direct result of sponsor requirements was the decision to implement the runtime experiment in
Ada. This requirement was levied by the sponsor to comply with Public Law 101-511 which mandates

"where cost effective, all Department of Defense software shall be written in the programming language

- Ada." The languages currently used by the sponsor include C and C++. While special exemptions can be

granted by the Secretary of Defense, the number of exemptions approved each year is decreasing. By

using the Ada language, this research provides essential feedback that can be used to expedite the
conversion of existing software to Ada or to justify continued waiver requests.

Another decision partially influenced by the sponsor was the selection of the Verdix Multi-
Processor Ada (MP Ada). Early in the research, it became apparent that an Ada compiler for developing
next-generation real-time systems should provide certain capabilities. Some of these capabilities include:
preemptive priority scheduling, dynamic task assignment, task suspension and resumption, task-to-
processor assignment, interrupt handling, and absolute time control. While most Ada compilers available
at AFIT do not provide these capabilities, Verdix MP-Ada, which is available to the sponsor and to AFIT,
does provide these capabilities via a nonstandard extension to the Ada language.

A consequence of selecting Verdix MP-Ada is that both available copies exist on Silicon
Graphics computers. A problem with the Silicon Graphics is its available clock resolution. According to
system documentation the system has a timer resolution of approximately 0.01 seconds. Sometimes, this
resolution is an order of magnitude larger than the timing requirements identified in the GAP. To
compensate for this problem, the duration and period of GAP tasks have been modified to be multiples of
the clock resolution. In addition to this, several tasks have been omitted and others modified to reduce the
length of the cyclic schedule. The primary reason for doing this was to reduce the amount of time
required for each experiment. The results of these modifications are detailed in Table 3.2.

Another problem with using the Silicon Graphics is its use of the UNIX operating system. While
UNIX is a very powerful general purpose operating systems, it lacks the rigorous process control required
for regulating hard real-time tasks [Musliner, 1993]. As a result, there may be a degree of uncertainty
injected into experimental data. An effort is made to minimize this uncertainty by limiting access to the

machine and using the UNIX command nice to maximize the priority of the experimental system.

35 Design Assumptions
The primary assumption made by this thesis is that some elements of a next-generation real-time

system can be implemented using partial-solution tasks. This assumption, which has been approved by

3-7

the sponsor, can be supported by applying our definition of a partial-solution task to several example

problems.
Table 3.2: Modified GAP Timing Requirements
GAP Timing Requirements
Task Name | Period | Duration [ID Cyclic Priority | Cyclic Period | Cyclic Duration

Contact Mgnt 0.025 0.005 1 ESSENTIAL 0.200 0.050

Tracking Filter 0.025 0.002 - - - -
Target Update I 0.050 0.005 2 | NONESSENTIAL 0.500 0.050
Nav Update 0.059 0.008 3 | NONESSENTIAL 0.500 0.080

Hook Update 0.065 0.002 - - - -
Graphic Display 0.080 0.009 4 CRITICAL 0.800 0.090
Target Update I | 0.100 0.005 5 CRITICAL 1.000 0.050
Keyset 0.200 0.001 6 CRITICAL 2.000 0.010
Steering Cmds 0.200 0.003 7 | NONESSENTIAL 2.000 0.030
Stores Update 10.200 0.001 8 | NONESSENTIAL 2.000 0.010
Status Update I 0.200 0.003 9 | NONESSENTIAL 2.000 0.030

Nav Status 1.000 0.001 - - - .

Status Update I 1.000 0.001 - - - -

In Chapter II, a partial-solution task was defined as Va task that is capable of generating an
acceptable partial solution under less than optimal timing constraints. One example of such a process is a
technique used in graphics for guarantecing image refresh rates. Most graphical simulations trade image
quality for time. The more time that is available, the more accurate the image. However, to create
believable animation, it is necessary to generate at least 15 graphical frames a second. If an image
becomes too complex, it may be impossible to generate the entire image in real-time while still meeting
the 15 frame requirement. To overcome this problem, graphical systems can use an iterative method that
renders images starting with the closest object first and moving to more distant objects as time permits.
Each iteration produces an acceptable partial solution and moves on only if it can continue to guarantee
the required frame rate.

Another example is a multi-window display that organizes and updates its windows in an
iterative or hierarchical order. Using the iterative approach, the device will display each window in a
predetermined order. If time runs out, the task will complete the current window and suspend until more
time becomes available, at which time it will continue from where if left off. The net effect is a partial

solution quality that stretches out the window refresh period. Using the hierarchical approach, the device

3-8

would display each window starting with the most important window first. If time runs out, the task will
complete the current window and suspend until its next activation, at which time it will start again with
the most important window. This approach produces a partial solution that updatés only the most
important windows in the available time.

Yet another partial-solution task is rule-based evaluation in expert systems. Rules can be ranked
in priority order so the low-importance rules can be left out if time available is insufficient. Another
possibility to consider is neural nets and the limitation of node summations. The extent of a search
technique is another.

Each of these examples is a valid application of partial-solution tasks and shows their
applicability to next-generation real-time systems. While not all processes can be developed as partial-
solution tasks, it is reasonable to assume that some can be developed in this manner.

A secondary assumption made by this research is that partial-solution tasks require some
minimum amount of processing time to successfully complete. This processing time could include: the
time required to successfully complete the current process iteration, the time required to transfer results,
or the time required to transfer process control due to an unexpected interruption. Failure to execute for
this required amount of time will result in a missed deadline.

The final assumption made by this research is that tasks are independent. This assumption is
required by theorem 1 of the rate moﬁotonic scheduling. It has also ‘been extended, as a simplifying

assumption, to the runtime scheduling phase since it eliminates the need for complex control methods.

3.6 Summary

This chapter has provided some of the methodology used in the development of the pre-runtime
and runtime systems for demonstrating the performance benefits of partial;soluﬁon tasks. It has
summarized the high-level objectives, the test data, the process used for demonsuaﬁng the objectives, and
proposed four metrics for measuring system performance. Additionally, it has addressed some key design
decisions and basic design assumptions. The subsequent chapters in this thesis describe the

implementation of the supporting software, test results, and some recommendations for future work.

39

IV - Implementation of Support Software

This chapter describes the design and implementation of the pre-runtime scheduler and the
runtime executive.

The pre-runtime scheduler was developed with two objectives in mind: to create a program for
verifying the schedulability of independent periodic tasks; and, to generate fixed-priority schedules for
feasible task sets. The pm-mnﬁme scheduler is implemented in Common Lisp and resides on a Sun
workstation, The decision to use Common Lisp instead of Ada was based on two factors: First, time
constraints limited the amount of time available for developing new software. Second, the Common Lisp
scheduler represented a reusable component that required minimal modifications to incorporate into the
design of the pre-runtime demonstration.

The runtime executive was developed with one objective in mind - to measure and compare the
robustness of systems implemented using partial-solution techniques with the robustness of systems
implemented using traditional all-or-nothing techmiques. As required by the sponsor, the runtime
executive is implemehted in Ada. The current version has been developed on a Silicon Graphics Iris
workstation using Verdix MP-Ada version 6.21. Selected source code from both systems is contained in

Appendix F.

| 4.1 Pre-Runtime Scheduler

The pre-runtime scheduler was developed to provide static scheduling support for the pre-
runtime schedulability and maintainability demonstrations. For a feasible set of tasking requirements, the
scheduler produces a fixed-priority schedule. Failure to produce a fixed-priority schedule indicates a non-
feasible set of requirements.

The foundation of the scheduler is theorem I of the rate-monotonic scheduling algorithm.
According to theorem 1, a set of n independent periodic tasks scheduled by the rate-monotonic algorithm
will always meet their deadlines, for all task phasings, if the total processor utilization is less than the

maximum utilization. In this context, meeting the deadline means that the task will complete prior to its

4-1

next activation. The theorem is easily extended to multi-processor systems if it is assumed that tasks are
independent and CPUs are independent and homogeneous. Such a system is considered schedulable if the
set of tasks assigned to each CPU is schedulable.

The scheduling software is divided into four modules: task.lisp, schedule.lisp, print.lisp, and

translate lisp.

4.1.1 task.lisp. This module contains information describing individual task reduirements.
Each task is defined as a separate entity using setf. The defstruct task template used for storing task data
and an example partial task entry is described in Figure 4.1. The example task can be converted to an all-
or-nothing task by replacing the multi-item duration list with a list containing a single duration. Task

entities are combined during the scheduling process to create system requirements.

Task Template

(defstruct task (name nil)

(duration nil)

(period nil)

(importance 0)

(priority 0)

(bodyin "./Template/template.adb")
(bodyout "./Source/task_body.a")
(specin " /Template/template.ads”™)
(specout "./Source/task_spec.a"))

Example Task

(setf t1l (make-task

:name *taskl

:duration '(1.5 0.5 0.2)

:period '10.0

:importance 'l

:bodyout ", /Source/taskl_body.a"
:specout ", /Source/taskl_spec.a"))

Figure 4.1: Task Template and Sample Task
4,12 schedulelisp. This module is the heart of the scheduling software. It uses a depth-first
search strategy to assign tasks to processors and durations to tasks. The depth-first strategy was selected |
for two reasoms: First, the design did not require a strategy capable of generating an optiﬁxal solution, but
simply one that generated any acceptable solution. Second, the depth-first strategy is easy to implement.
The maiﬁ entry point into the program is the function schedule-system. Schedule-system takes as
inputs the number of processors allocated to the system and the tasks to be scheduled. The format for
calling schedule-system is: |
schedule-—system(numl_:er—of—processors taskl task2 task3 .

.. taskN)

4-2

Schedule-system relies heavily on four other functions to carry out the depth-first search strategy:
schedule-system-aux, schedule-tasks, schedule-children, and schedule-next-task.

Schedule-system-aux is responsible for initializing the scheduling data structure. Task durations
are sorted in descending order to insure higher quality (long duration) processes are considered before
lower quality (short duration) processes. Tasks are also sorted by importance to insure higher importance
tasks are considered before lower importance tasks. Task priorities are set to zero, and the system
pfocessor list is built. Once initialization is complete, control is passed to schedule-tasks which tries to
schedule the first task in the task list.

Schedule-tasks is responsible for scheduling a single task onto the system. It uses the function
generate-children to create a list of processes that represent all possible task/duration/processor
combinations for the desired task. For example, calling generate-children with the task described in
Figure 4.1 and two processors would result in six children being placed in the process-list: (taskl 1.5 1),
(taskl 1.5 2), (taskl 0.5, 1), (taskl 0.5, 2), (taskl ‘0.2 1), and (taskl 0.2 2). The order of this list
determines the order in which processes are evaluated. Once the list of children has been created, control
is passed onto schedule-children.

Schedule-children is responsible for scheduling a single process on a processor. If theorem I
continues to hold when the process is added to the processor, the function will call schedule-next-task
with a new system list, the old system list, and the next task to be scheduled. If the processor utilization is
greater than the maximum utilization, then schedule-children will call itself with the first element of the
processes-list removed. If none of the children can be scheduled, the function will fail and return nil.
This function cvarries out the depth portion of the depth-first search.

Schedule-next-task is responsible for scheduling the next task on the fask-list onto the new
system generated by schedule-children. If the next task cannot be scheduled with the new system, the
function calls schedule-children with the old system and the next process. This function implements the

backtracking portion of the depth-first search.

4-3

4,1.3 printlisp. This module is used to print schedules generated by schedule-system. It
sorts the scheduled tasks by CPU, and period and assigns task priorities by increasing period as described
by the rate-monotonic scheduling algorithm. Figure 4.2 provides an example of the output generated by

the print-schedule routine for the modified GAP requirements.

4.1.4 translatelisp. This module is used to translate schedules generated by schedule-system
into Ada source code. The translation is done by reading a template file and making named substitutions
to generate the Ada code. Substitutions are limited to one per line and are performed on both

specification and body template files. This portion of the scheduler was used during initial development

" of the runtime executive to minimize the time required for developing Ada tasks.

Sample Output From Print-Schedule
-> (print-schedule 1 tl1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t12)

Processor #1

Name Period Duration Priority Importance Processor
CONTACT MGNT 0.2 0.05 31 2 1
TARGET_UPDATE_I 0.5 0.05 32 1 1
NAV_UPDATE 0.5 0.08 33 1 1
GRAPHIC_ DISPLAY 0.8 0.09 34 3 1
TARGET UPDATE_II 1.0 0.05 35 3 1
KEYSET 2.0 0.01 36 3 1
STEERING_CMDS 2.0 0.03 37 1 1
STORES_UPDATE 2.0 0.01 38 1 1
STATUS_UPDATE 2.0 0.03 39 1 1

Util [0.71250000000001]
Max Util [0.7205376500755]

Figure 4.2: Sample Output From Print-Schedule

42 Runtime Executive

The runtime executive was developed to support the runtime robustness experimént. It uses
generic tasks to simulate the performance of real-time systems developed using all-or-nothing and
partial-solutions techniques. The primary purpose of the software is to gather statistical data that
measures the effect of randomly generated sporadic tasks on four performance metrics: average solution
quality for cyclic tasks, percentage of missed deadlines for cyclic tasks, average solution quality of

sporadic tasks, and percentage of missed deadlines for sporadic tasks.

4-4

The underlying structure of the executive was developed from examples provided in [Baker,
1989:17]. Baker's on'Qinal design has been slightly modified to support the additional requirements of
sporadic task generation and scheduling. The runtime system is divided into eight component# timer,
executive, sporadic scheduler, sporadic generator, cyclic schedule, task interface, display task, and a
generic tasks package. Each of these components is encapsulated in an Ada package and described in the

following sections. Figure 4.3 illustrates a top-level architecture of the runtime system.

AdaPackage E

ot AL ODE

Figure 4.3: Runtime System (Top-Level Architecture)

4.2.1 | Package Timer, Executive, and Cyclic Schedule. It is important at this time to make
a distinction between Ada tasks and cyclic tasks. The timer task, executive task, display task, and generic
tasks are all internally fepnesented using Ada tasking constructs. The simultaneous execution of these
tasks on the system processor is conducted using the preemptive fixed-priority scheduling strategy
described in the Verdix Ada Language Reference Manual.

The display task and generic tasks are also cyclic tasks. The preemptive execution of cyclic tasks

is controlled by the cyclic executive in compliance with the cyclic schedule. Since the current executive

4-5

has only a single virtual processor, only one cyclic task is allowed to be active at any given time. All other
cyclic tasks must be suspended or waiting on an Ada rendezvous with the cyclic executive.

The control structure for the runtime executive revolves around two key components, the cyclic

- schedule and the timer. The cyclic schedule consists of a fixed number of frames that describe a sequence

of events for starting, stopping, suspending, and resuming cyclic tasks. The executive steps through each
frame of the cyclic schedule at a rate of one frame every 0.01 second, in response to interrupts generated
by the timer. At the end of the schedule the executive resets the frame count to one and repeats the cycle.

During each frame of the cyclic schedule, system processing time is distributed betweeﬁ three
Ada tasks: the timer task, the executive task, and the currently running generic cyclic task. At the
beginning of the frame, the cufrently running c&clic task is preempted by the fixed-priority scheduler in
response to the activation of the higher-priority timer. The timer resumes the executive task using an Ada
rendezvous; Failure of the executive to respond immediately to the rendezvous indicates an executive
overrun and is recorded as a missed deadline for the executiveb. The current technique for handling
missed deadlines, except for recording them, is to ignore them. After the rendezvous, the timer resets the
alarm, and suspends itself until the next activation.

Following a successful rendezvous between the timer and executive, and after the timer has
suspended itself, control is passed to the executive task. The executive performsk five actions that
determine the next cyclic task to execute:

e Itcalls the sporadic_generator to update the sporadic activation list.

* It calls the sporadic_scheduler to queue sporadic tasks that have an activation time equal to
the current time.

e It calls the sporadic_scheduler to resume any cyclic tasks that were preempted during the
previous executive cycle.

* Itexecutes the actions required by the current frame of the cyclic schedule.

e Tt calls the sporadic_scheduler to determine if a sporadic task should preempt the currently
activated cyclic task.

Further details on each of these actions are provided in the next two sections.

4-6

After completing the scheduling process, the executive suspends itself and waits for the next
rendezvous with the timer. The time remaining, before the next timer activation, is used by the currently

activated cyclic or sporadic task to perform work. If no tasks are activated, then the time goes unused.

4.2.2 Package Sporadic_Generator. The sporadic_generator is responsible for generating
sporadic task activations at a fixed frequency (number of tasks/sec) and random arrival times for the
duration of the simulation. The default value of 10 tasks/second can be modified by passing the desired
frequency on the command line using the -sf option.

The generator maintains a list of sporadic activations for a period of one second. At the
beginning of each second, the activation list is cleared and updated in response to the request from the
executive task. The list is filled with the required number of activations using a repeatable pseudo-
random number generator. The selection of a repeatable random number generator is important, since it
allows the simulation to guarantee the same sequence of sporadic activations from one experiment to the
next. The random number generator is used to determine the time index during which the sporadic task
should be activated. The activation list is updated by incrementing a counter associated with the requested

time index.

4.2.3 Package Sporadic_Scheduler. Activations created by the sporadic_generator are
consumed by the sporadic_scheduler. In response to a request from the executive, the scheduler creates
one sporadic task for each activation referenced by the current time index. The creation process consists
of setting the task start time, duration, response time, importance, and deadline, and placing the task on
the sqheduling queue.

Four queuing techniques are available for use by the scheduler: last-in-first-out (LIFQ), first-in-
first-out (FIFO), deadline, and importance. The only technique used in the partial-solution experiments is
the importance-based scheduling. In importance-based scheduling, critical tasks are selected first,
essential tasks second, and non-essential tasks last. Importance‘values for the 11 simulated real-time
systems were assigned by the sporadic_generator, to the sporadic tasks, at runtime, using a repeatable

random number generator.

While deadline-driven scheduling has been shown to be optimal in some situations, it does not
take into cOnsideraﬁon the importance of individual task requirements. Because of this, it is possible that
a critical task can be ignored in favor of a non-essential task with a short deadline. In many situations,
this may not be appropriate. Importance-based scheduling, while not producing optimal results, places
the emphasis on completing tasks that have the greatest impact on the system. Additionally, this strategy
allows the scheduler to comply with the Spring multi-level architecture.

Dequeuing is activated by a second request from the executive. In response, the scheduler
dequeues all tasks that have executed to completion, péssed their deadlines, or require more time than is
available before their deadline. The missed deadline count is incremented for those tasks that are
dequened before completion. Following the dequeuing process, the scheduler attempts to schedule the
topmost task by preempting the currently scheduled cyclic task. If the processor is idle, or the sporadic
task has a higher importance than the cyclic task, then the preemption process succeeds. A successful
preemption results in the suspension of the cyclic task and activation of the sporadic task. During the next

iteration of the scheduler, the suspended task is resumed and the process repeats.

424 Package Generic_Task. In the current implementation, sporadic tasks are not
implemented as Ada tasks and do not perform any actual work. Instead, they are simulated all-or-nothing
tasks that simply act as triggers for suspending the execution of cyclic tasks. On the other hand, cyclic
tasks are implemented as Ada tasks and perform work based on the amount of time allocated to them. For
all-or-nothing tasks the solution quality of the task is only recorded after the task has successfully
completed all its work. For partial-solution tasks, the solution quality is recorded each time the task
completes a predetermined section of code.

To minimize the effect of task implementation on experimental results, both the all-or-nothing
tasks and partial-solution tasks have been constructed using a single Ada package generic task. This
generic package encapsulates an underlying Ada task with the control functions necessary for initializing,
starting, stopping, resuming, suspending, stop-working (stopping the task prior to completion), and

terminating the cyclic task in response to commands from the executive. Each cyclic task is simply an

instantiation of the generic_task, with the task_id defined at compilation time and the fask_type defined at

runtime.

-— Reference to conservative can be modified to produce alternate
-- performance curves (linear, optimistic)

task body doit is

temp : integer := 1;
iteration : integer := 0;
begin
task_id := v_1i_tasks.get_current_task;

accept initialize task;

loop
accept start next cycle do

completed 1= FALSE;
stopwork := FALSE;
reset := TRUE;
iteration := 0;

loops (id) := 0;
quality(id) := 0.0;

o,

end start_next cycle;
while stopwork = FALSE loop
if reset then
reset := FALSE;

iteration := 0;

loops (id) :=0;

quality(id) := 0.0;
end if;

for count in 1l..lcount loop
if stopwork or reset then
exit;
end if;
temp := (temp + 1) mod 101;
loops (id) := loops{(id) + 1;
end loop;

iteration := iteration + 1;
if ttype(id) = ITERATIVE TASK then
quality(id) := conservative(iteration);
end if;
exit when iteration = 20;
end loop;

if (ttype(id) = ITERATIVE_TASK) then
if (iteration /= 0) then
quality(id) := consexrvative(iteration);
end if;
else
if (iteration = 20) then
quality(id) :='1.0
end if;
end if;

H

completed := TRUE;

end'loop;
end doit;

Figure 4.4: Underlying Ada Task

49

The implementation of the underlying Ada task is based on the Root-By-Newton method for
generating square roots. Root-By-Newton uses an iterative process to increase the quality of a guess
during each consecutive iteration. The process terminates when the change in the guess is within a
specified tolerance. Since the research example only tries to find a single real, positive square root, to a
real positive number, convergence is not considered a problem.

The algorithm is representative of the general class of partial-solution tasks, because it can
produce an approximation (partial-solution) even if it is terminated prior to meeting the tolerance
requirement. The implemented version hhs been modified from its original form to support additional
requirements. These requirements are a result of information gained during the runtime test and are
further addressed in Chapter V.

In its current form, the software does not actually perform the square-root function. Instead, it
uses a performance curve and a worker loop to simulate the processing cost and solution quality of the
function (see Figure 4.4). This method increases the flexibility of the software, by allowing it to model
several functions without having to develop additional, and sometimes complex, Ada tasks.

The distinction between all-or-nothing tasks and partial-solution tasks is embodied in the method
used for recording the task solution quality. At the start of each task, the solution quality is initialized to
0.0. For partial-solution tasks, the solution quality is recorded at the end of each iteration. For all-or-
nothing tasks, the quality is modified to 1.0 only if the task runs to completion within the allocated time.

While the solution quality of the task is fixed, the processing cost can be varied by scaling the
duration of the worker loop. For instance, a task requiring a duration of 0.20 seconds may require the
Icount be set to 70,000 while one requiring 0.02 seconds only requires the loop to execute for 7,000 (the
Icount variable can be set using the command line option -/). This capability also functions as a
calibration technique when porting the simulation between several machines with different processing

capabilities.

4.2.5 Package Task_Interface. Communications between the cyclic tasks and the executive

are provided via the task_interface package. The interface was developed to minimize the number of

4-10

packages requiring references to the generic tasks. It uses a single function, update_task to pass control
commands from the executive to all system tasks: executive, timer, display, cyclic and sporadic.

As well as handling task communications, the interface package also contains the central data
repository for system data and task statistics. For each task it maintains: task id, task type, task name,
fask duration, task importance, task status, task activation flag, number of missed deadlines, number of
attempted deadlines, current solution quality, total solution quality, average solution quality, current
number of worker loops, total number of worker loops, average number of worker loops, and total time
used. For sporadic tasks it maintains: sporadic duration, sporadic response time, and sporadic frequency.
For the scheduler it maintains: current scheduling mode, running task id, interrupted task id and a
nonpreemptive scheduling flag. Finally, for the system it maintains the test duration and interactive mode

flag.

42.6 Package Display. Much of the information maintained in the interface package can be
displayed using facilities provided by package display. Display contains a cyclic task modified to provide
both interactive and non-interactive data presentation.

The interactive display uses curses-based functions to present system and task information during
runtime. Curses is UNIX code library that provides device independent routines for terminal IO.
Interestingly enough, it was necessary to implement the interactive display using a partial-solution task.
In its original version, the display I/O was implemented using the TEXT_IO functions provided in
package standard. These funé:tions were unable to refresh the entire screen in the allocated time.. Instead

.of increasing the amount of time available to the display tasks, it was modified to perform partial updates

in an interactive manner (much like the iterative example provided in Chapter III). The resulting code
achieved an update rate (or solution quality) of approximately 0.3 screens per execution. When the code
was modified to use the curses functions, the update rate jumped to approximately eight to ten screens per
execution. Example output from the interactive display is provided in Figure 4.5.

The non-interactive version of the display uses TEXT_IO functions to output simulation statistics

to the UNIX standard output pipe (stdout). By using stdout, it is possible to redirect the statistical data

4-11

directly into a file, thereby eliminating the need for human interaction. This capability reduces the
amount of time required for gathering and recording simulation data. Output from the non-interactive

display is only generated for cyclic tasks and is limited to the task solution quality and number of missed

deadlines.
Sporadic Scheduling: (PREEMPTIVE] Sporadic Frequency: [10/Sec]
Sporadic Queue: [IMPORTANCE] Sporadic Duration: [0.10]
Sporadic Response: [0.10]
NAME T I S Time ALocps AQuality Quality Missed Attempt Prem Total
[Exec] [D] [C] [C] [0.01] [0] { 0.0000] { 0.0000] [0] [1300] [0.00] [0.00]
[Disp] [I] [N] [8] [0.04] [1] [2.40911 [2.8182] [6] [20] [0.19] [0.61]
[SporC] [D] [C] ([C] [0.01] [0] [0.0000] [0.0000] [26} { 33] { 0.00] [1.51]
[SporE] [D] [E] [C] [0.01] [01 [0.0000} [0.0000] [65] [661 [0.00] [0.60]
[SporN] [D} [N] [C] [0.01] [0) [0.0000) [0.00001 [30] [30] [0.00] [0.00}
[Taskl] [I} [C] ([C] [0.08] [5091) [1.0000) [1.00001 [OF [20} [0.00] { 1.60]
[Task2] [I} [N} [C] [0.02] [402] [0.0217] [0.0409] [51 [20] [0.09) [0.31}
{Task3] [I] [E] ([C] [0.02) [384) [0.0302] [0.0409) [2} [20) [0.04] [0.36]
{Task4] [I] (E] [C] [0.08) [3534] [0.7647] [0.9893] [4] [20) [0.28] [1.32]
[Task5] [I] [C] [C] [0.08] [5093] [1.0000] [1.0000] [01 [20) [0.00] [1.60]
[Task6] [I] [N] [S] [0.10) [2906] [0.4235] [0.9893) [8] [201 [0.77] [1.23]
{Task7] [I] [E] [S] [0.10] [5249] [0.7579] [0.00511 [2] [20] [0.25] [1.75]
[Task8] [I] [E] [S] [0.10] [3346] [0.4%909] [0.0000] [6] [20] [0.48] [1.52]
[Task9] [I] [C] [C] [0.02] [732] [0.0390] [0.0409] [0] [20) [0.00) [0.40]

Figure 4.5; Interactive Display Output

4.3 Summary

This chapter described the software architectures used to conduct the pre-runtime demonstrations
and the runtime experiments. In Chapter V, results from the experiments are analyzed to determine if
actual results reflect expected results, Part of this analysis includes a review of the software

implementation and its impact on experimental results.

4-12

V-Test Plan and Results

Chapter ITI described the methodology used by this research to investigate the potential benefits
of partial-solution tasks. This chapter develops a test plan based on that methodology, presents results
from the execution of the test plan, and analyzes the results to determine if the partial-solution tasks
performed as expected. In response to unexpected fesults, some extensions were made to the original test
plan. To preserve the flow of reasoning, these extensions are presented chronologically in the results and
analysis section. Results gathered during the first (scheduled) phase of the runtime experiment are
referred to as initial results, while results gathered during the second (unscheduled) phase are referred to

as extended results.

5.1 Test Plan
The performance test plan is divided into two sections: the pre-runtime schedulability and
maintainability demonstration, and the runtime robustness test. Each section identifies the expected

results and the procesé used to generate actual results.

5.1.1 Pre-Runtime Schedulability and Maintainability Demonstration. Demonstrating the
increased schedulability and maintainability of partial-solution tasks was conducted in three phases: In
the first phase, the original GAP timing requirements (detailed in Table 3.1) were scheduled using the
rate-monotonic scheduler. Results from the scheduler were expected to reflect that the timing
requirements are non-schedulable using theorem I of the rate-monotonic scheduling algorithm. In the
second phase, the GAP Graphics-Display task was modified to reflect implementation as a partial-solution
task. This task was selected for its high utilization of 0.113. Results from scheduling the new
requirements using the rate-monotonic scheduler was expected to demonstrate the increased schedulability
of partial-solution tasks by generating a feasible schedule where none existed using all-or-nothing tasks.
And in the final phase, additional tasks were added to the modified GAP to simulate increased
requirements due to maintenance (i.e., upgrading software). Results from scheduling each additional task

using the rate-monotonic scheduler was expected to demonstrate the increased maintainability of partial-

5-1

solution tasks by generating feasible schedules that degrade the perfqrmance of the Graphics-Display task

to satisfy the requirements of the new task.

5.1.2 Runtime Robustness Test. Testing the increased robustness of partial-solution tasks
was accomplished by experimentally measuring the effect of random sporadic task arrivals on eleven
simulated real-time systems. Ten of these systems consisted of randomly generated timing requirements
while the eleventh contained the modified GAP requirements presehted in Table 3.2. Detailed timing
information for the randomly generated systems can be found in Appendix A.

The performance of the eleven systems was measured using four metrics: average solution quality
for cyclic tasks (metric 1), number of missed deadlines for cyclic tasks (metric 2), average solution quality
for sporadic tasks (metric 3), and number of missed deadlines for sporadic tasks (metric 4). For partial-
solution cyclic tasks, the solution quality was calculated using the performance curves shown in Figure

5.1. These three curves were selected because they are representative of three types of processes. The

Performance Curve (Conservdive/Linear/Optimistic)
——O— Cosewitve —O—— Urer —— Optinistic
) 1
09
£or ’/
g 05 /
05 / e
k! /
H 04 /
s 03
* 02 y
o1 i
0 . g
© - &4 o =% &M e = © o o =T N4 ¢ ¥ B o & 2 2 g
Iterations

Figure 5.1: Conservative/Linear/Optimistic Performance Curves
Conservative curve represents processes that achieve only a small change in solution quality early in their
execution but a large degree of change during the later portion of their work. The Optimistic (reverse
Conservative) curve describes the opposite situation, where the process achieves most of its accuracy early
in process execution and makes only slight improvements as additional time is used. The Linear curve
represents a process whose solution quality changes at the same rate throughout the entire execution

process.

Since the sporadic tasks are simulating all-or-nothing tasks, they can only achieve solution
qualities of zero or one. Based on this, their average quality can be calculated by dividing the number of
missed deadlines by the number of activations.

The runtime characteristics of the sporadic tasks are described using four attributes: duration,
response time, frequency and importance. Since it is not feasible to test all possible combinations of these
attributes, a cross-section of the population was selected using three tests. In the first test, frequency was
varied, while duration and response time were kept constant. In the second test, duration was varied,
while frequency and response time were kept constant. And, in the final test, response time was varied,
while frequency and duration were kept constant. During all tests the importance of the sporadic tasks
was randomly generated. In total, nine tests were conducted on the eleven simulated systems:
Conservative Performance - Fixed Frequency.Test
Conservative Performance - Fixed Duration Test
Conservative Performance - Fixed Response Test
Linear Performance - Fixed Frequency Test
Linear Performance - Fixed Duration Test
Linear Performance - Fixed Response Test
Optimistic Performance - Fixed Frequency Test

Optimistic Performance - Fixed Duration Test
Optimistic Performance - Fixed Response Test

Each of the performance tests was executed twice: the first time using simulated all-or-nothing
tasks and the second time using partial-solution tasks. Results from these two runs were compared to
determine if the partial-solution tasks outperform the all-or-nothing tasks. It was expected that the
partial-solution tasks would decrease the number of missed deadlines and increase the average solution

quality in each of the eleven systems.

52 Chronological Test Results

The following section summarize results for both the pre-runtime demonstration and the runtime
experiment. Full results are available in the appendices. Results from the pre-runtime demonstration are
available in Appendix B, while results from the initial runtime experiment are shown in Appendix C,

extended runtime results in Appendix D, and group runtime results in Appendix E.

5-3

5.2.1 Infeasible GAP Schedule. During phase one of the schedulability and maintainability
demonstration, the GAP schedule presented in Table 3.1 was shown to be infeasible using theorem 1 of
the rate-montonic scheduling algorithm. The schedule became infeasible when the eighth task (Status-

Update-I) was added, causing the total utilization to exceed the eight-task upper bound of 0.7241,

522 Feasible GAP Schedule. During the second phase of the schedulability and
maintainability demonstration, the = GAP Graphics-Display process was modified to simulate
implementation as a partial-solution task. The modification consisted of replacing the single-field
duration of (0.009) with a multi-field duration of (0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
0.009). This new duration was designed to simulate implementation of an interruptible iterative task that
requires a closure/clean-up time of 0.001 seconds.

As expected, the rate-monotonic scheduler was able to generate a feasible schedule using the new
partial-solution task. The resulting fixed-priority schedule, which is shown in Figure 5.2, was possible
because the scheduler was able to degrade the requirements of the Graphics-Display task to 0.005
seconds. The new solution quality of the task (before runtime preemption) can be determine by cross

referencing the task duration with the task performance curve.

-> (print-schedule 1 tl1 t2 t3 t4m t5 t6 t7 t8 t9 t1l0 tll t12 t13)

Processor #1

Name Period Duration Importance Processor
CONTACT_ MGNT 0.025 0.005 2 1
TRACKING FILTER 0.025 0.002 1 1
TARGET UPDATE_I 0.05 0.005 1 1
NAV_UPDATE 0.059 0.008 1 1
HOOK_UPDATE 0.065 0.002 1 1
GRAPHIC DISPLAY 0.08 0.005 3 1
TARGET_UPDATE_II 0.1 0.005 3 1
KEYSET 0.2 0.001 3 1
STEERING_CMDS 0.2 0.003 1 1
STORES_UPDATE 0.2 0.001 1 1
STATUS_UPDATE-I 0.2 0.003 1 1
NAV_STATUS 1.0 0.001 1 1
STATUS_UPDATE II 1.0 0.001 1 1

Util [0.7008624511082139]
Max Util [0.7119589942614066]

Figure 5.2: Feasible GAP Schedule

5.2.3 Increased Requirement GAP Schedule. During the final phase of the schedulability
and maintainability demonstration, the modified GAP was supplemented with four additional tasking
requirements based on a subsystem from the Air Force's F-22 project. These ne§v requirements, which are
shown in Table 5.1, represent additional task loads that might be added to an avionics platform during
software maintenance. The total utilization presented in the table include the utilization from the original
GAP tasks. |

Table 5.1: GAP Maintenance Requirements

Task Name | Period | Duration | Utilization | Total Utilization
Collision Monitor | 0.200 | 0.0003 0.0015 0.7535
Pilot Manager 1.000 | 0.0081 0.0081 0.7616
Tactical Manager | 1.000 | 0.0269 0.0269 0.7885
EOB Manager 1.000 | 0.1331 0.1331 0.9216

The impact of these additional tasks and the adaptive response of the rate-monotonic scheduler
are summarized in Table 5.2. The results show that the scheduler can adapt the performance of the

Graphic-Display to accommodate the first three maintenance requirements. However, the scheduler was
Table 5.2: Results from GAP Maintenance Requirements

Name Period Duration Priority Importance Processor
GRAPHIC DISPLAY 0.08 0.005 36 3 1
COLLISION _MONITOR 0.2 0.0003 42 1 1
Util [0.7023624511082137]

GRAPHIC DISPLAY 0.08 0.004 36 3 1
COLLISION_MONITOR 0.2 0.0003 42 1 1
PILOT_MANAGER 1.0 0.0081 45

Util [0.6979624511082138]

GRAPHIC DISPLAY 0.08 0.002 36 3 1
COLLISION_MONITOR 0.2 0.0003 42 1 1
PILOT_ MANAGER 1.0 0.0081 45 1 1
TACTICAL MANAGER 1.0 0.0269 46 1 1
Util [0.6998624511082138]

EOB_MANAGER 1.0 0.1331 32 1 1
GRAPHIC DISPLAY 0.08 0.009 35 3 2
COLLISION_MONITOR 0.2 0.0003 41 1 2
PILOT_MANAGER 1.0 0.0081 44 1 2
TACTICAL MANAGER 1.0 0.0269 45 . 1 2
Util [0.2686932203389830] (Processor 1)

Util [0.6517692307692307] (Processor 2)

not able to degrade the system enough to schedule all four tasks on a single processor. Adding an
additional processor to the system alleviated the problem and allowed the schedule to automatically

maximize the performance of the Graphic-Display in response to the new resources. Had the Graphic-

5-5

Display been implemented as an all-or-nothing task, it would have been impossible to support any of the

intermediate requirements without requiring the additional processor.

52.4 Initial Runtime Test Results. A summary of the runtime test resﬁlts is presented in
Table 5.3. ’This table classifies results by task performance curve, test type, metric, and task requirements
(GAP (G), random (R), or both (B)). Results are shown as positive (+), negaﬁve (-), and unchanged (~).
A positive result indicates an improved solution quality or decrease in the number of missed deadlines. A
negative result indicates a degraded solution quality or increase in the number of missed deadlines. The

last two rows of this table sum the total number of tests, by requirement, that produced positive, negative,

and unchaged results.
Table 5.3: Runtime Results
Cyclic-Quality Cyclic-Deadlines | Sporadic-Quality | Sporadic-Deadlines
(metric 1) (metric 2) (metric 3) (metric 4)

Curve Test + ~ - + ~ - + ~ - + ~ -
Conservative | Duration B B B B
Frequency B B B B
Response B B B B
Linear Duration B B B B
Frequency B B B B
Response B B B B
Optimistic | Duration R G B B B
Frequency | B B B B
Response B B B B

Random Total] 3 2 4 9 0 0 0 9 0 0 9 0

GAP Total] 2 3 4 9 0 0 0 9 0 0 9 0

Information shown in Table 5.3 reflects both expected and unexpected results. The expected
result is the decrease in cyclic-deadlines (metric 2). In all nine cases, this metric measured a decrease in
the percentage of missed deadlines being experienced by the cyclic tasks. Figure 5.3 provides a graphical
description of the performance increases during the Conservative-Frequency test. While these graphs only
show results from a single test, they do illustrate the general trend experienced during all nine tests. All
results not presented in this section, along WitiI a key to the results, is available m Appendix C.

The sporadic frequency vs percent missed-deadlines graphs describes the percentage of activated
cyclic tasks that missed their deadlines. Both of these graphs show that systems using partial-solution

tasks experiencing fewer missed deadlines than the same systems using all-or-nothing tasks. The

5-6

S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - R andom)
R R-APMen — B R-P-PMem
10000
05000
- 08000
2 ¢ 07000
§ 4 04000
" 5 05000
$ £ 04000
$ 2 03000
& 02000 %
o | :
5 4]] 20 26 30 85
Sporadic T ask Frequency (T asks /S ec)
S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - GAP)
EEEEEE eA-PMen —B—— GP-PMen
10000
05000
- 0.8000
? » 07000
§ 4 06000
. § 0800
5 g 0.4000
£ 8 0.3000 T
£ 02000 = % M— % %
el om0
5 0 B 20 26 S0
Sporadic T ask Frequency (T asks /S ec)
S poradic Frequency vs Percent improvement
(R andom vs GAP)
EEESRadom ——— GAP
VOO0
£ 80.00%m
8 6000%4E
§ 40.00% P15
20.00% 1%
i- 00.00% utiis
< -2000%
¢ -4000%
5 -6000%
a -8000%
-D0.00%
5§ ° D B 20 26 80 36 40 45 o
Sporadic T ask Frequency (T asks /S ec)

Figure 5.3: Conservative-Frequency Metric 2
sporadic frequency vs percent improvement graph quantifies the reduction in missed deadlines achieved
by using partial-solution tasks. For the Conservative-Frequency test, the reduction was 45% to 80% for
the GAP requirements and 60% to 80% for the randomly generated requirements.
Visual analysis of the group data presented in Appendix E (Figures E.1 through E.6) indicéte no
correlation between the decrease in cyclic-deadlines (metric 2) and the shape of task performance curves.

For each curve (Conservative, Linear, and Optimistic) the measured performance was nearly identical.

5-7

The slight deviations that were observed maybe contributed to a lack of tight process control under the
UNIX operating system. Performance results did vary slightly between duration, frequency and response
tests. However, on average, the partial-solution tasks were able to decrease the number of missed
deadlines by 70% for the randomly generated requirements and 60% for the GAP requirements.

The first unexpected result, shown in Table 5.3, is the decrease in cylic-quality (metric 1). In the
three Conservative tests, the average solution quality of the system using partial-solution tasks ranged
from 20% to 60% worse than the same system using all-or-nothing tasks. In the three Linear tests,
partial-solution tasks resulted in neither an increase mor decrease in solution quality. Only in the
Optimistic tests do the results show increased performance from implementation as partial-solution tasks.
The range of these results can be clearly seen in Figures 5.4 and 5.5.

Figure 5.4 shows the effect of partial-solution tasks during the Conservative-Frequency test. In
this test, the sporadic frequency vs solution quality graphs clearly show the partial-solution tasks
producing lower quality solution than the all-or-nothing tasks. The quantified results in the sporadic
frequency vs percent improvement graph show that the randomly generated requirements achieved
solution qualities 20% to 25% worse than the all-or-nothing tasks. The GAP requirements did even
worse, with solution qualities as much as 60% lower than the all-or-nothing tasks. Furthermore, the slope
of the GAP curve indicates that the degradation in solution quality becomes increasingly worse as
requirements increase. This characteristic suggests that the system is less robust than its all-or-nothing
counterpart.

Figure 5.5 shows the effect of partial-solution tasks during the Optimistic-Frequency test. In this
test, the sporadic frequency vs solution quality graphs show the partial-solution tasks producing higher
quality solutions than the all-or-nothing tasks. Furthermore, the sporadic frequency vs percent
improvement graph shows a general trend of increased robustness for both the GAP and randomly

generated timing requirement.

5-8

S poradic Frequency vs S olution Quadlity
(All-Or-Nothing vs P artidl-S olution - R andom)
T R-A-PMen ——l—— RP-PMen
2
3
»
-]
2
]
K]
L
-
H
™
20 26 30 a5 0
Sporadic Task Frequency (T asks /S ec)
S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs P crtid-S olution - GAP)
EEE=SIeAa-PMen ——— GP-PMen
10000
» 05000
2 0.8000
& 0.7000
2 04000
i 08000
< 0.4000
% 0.3000
“ 0.2000
= 0.D00
00000
Sporadic T ask Frequency (T asks /S ec)
S poradic Frequency vs Percent Improvement
(R andom vs GAP)
N Radom —W——GAP
D0.00%
2 8000%
§ 6000%
¢ 4000%
i 2000%
00.00% 4
$ -4000%. e e -
g $000% e e~
& -8000%
-DO00%
6 D B 20 26 30 85 40 45 -]
Sporadic T ask Frequency (T asks /S ec)

Figure 5.4: Conservative-Frequency Metric 1
The disparity between these results does suggest an important relaﬁonship between the effect of
partial-solution tasks and task performance curves. Better performance appears to occur in systems that
achieve large increases in solution quality during early task execution. This relationship is reflected in the

increasing performance from the Conservative curve to the Linear curve, and the Linear curve to the

- Optimistic curve. Since performance curves are task specific, the data also suggest that best results can be

achieved using doméin-specific information.

59

S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs P artid-S olution - R andom)

R-APMen ——— R-P-PMem

— .

Task Soletins Quslity
]
8

[D B 20 26 30 36
Sporadic T ask F requency (T asks /S ec)

S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs P artid-S olution - GAP)

GA-PMen ———— GP-PMem

i

0.8000
0.72000

>./"\

:

06000

Task Selation Quality

HiE

26 30 35
Sporadic Task Frequency (T asks /S ec)

S poradic Frequency vs Percent Improvement
R andom vs GAP)

EEFESradom —W— AP

VO.00%
80.00%
60.00%

L~

4000%

00.00% Jmeleecirittan | | I EWe

-2000%.
~4000%:
-60.00%.
-80.00%.
-0 00%:

Perceat Improrement

5 D B 20 25 30 35 40 45 8
Sporadic Task Frequency (T asks /S ec)

Figure 5.5: Optimistic-Frequency Metric 1
Another unexpected result was the information reflected by sporadic-quality (metric 3) and
sporadic-deadlines (metric 4). In all nine test cases, these two metrics showed no change between the
performance of the partial-solution tasks and the performance of the all-or-nothing tasks. After some
analysis, it was determined that these results are due to implementation of the sporadic scheduler. The

scheduler uses a simple importance-based queue to decide when to preempt executing tasks. Since task

5-10

arrivals have not changed, the scheduler is making identical decisions about which cyclic tasks to preempt
and which sporadic tasks to schedule. Addition of an intelligent scheduler should changes this result.
Overall, results from scheduled phase of the runtime test reflect varying performance benefits.
Cyclic-quality (metric 1) results suggest that partial-solution tasks may not be appropriate for systems
trying to decrease missed deadlines and increase average solution quality, depending on how fast sqlution
quality falls off. However, decreased cyclic-deadlines (metric 2) suggests that partial-solution tasks can be
extremely beneficial in systems that place more importance on meeting deadlines even if it results in a

lower quality solution.

5.2.5 Analysis of Cyclic-Quality Results. In response to the unexpected results, an effort
was made to analyze the runtime executive, to ascertain if its design contributed to the decreased solution
quality exhibited during the Linear and Conservative tests. From the analysis, it was determined that the
degraded performance was caused by three interacting factors: the assumption that partial-solution tasks
require a closure/clean-up time, the method used for implementing the generic_task, and the time
resolution of the executive.

The generic_task was developed to simulate the execution of both all-or-nothing and partial-
solution tasks. To accomplish this, it provides several control functions that allow the runtime executive
to initialize, start, stop suspend, resume, terminate, and abort cyclic tésks. The only function not shared
between all-or-nothing tasks and partial-solution tasks is the stop-work function, which is used to stop a
partial-solution task prior to normal completion.

Stop-work is required to support the assumption that partial-solution tasks require a
closure/clean-up time. It is based on the expectation that partial-solution tasks will routinely ‘be required
to stop prior to completion. This differs from all-or-nothing tasks, where successful completion is the
norm and failure rarely happens. When a failure does happen, the runtime executive must determine
when and how to reset the failed tasks, a process that uses valuable resources that may already be allocated

to other tasks. Handling partial-solution tasks in the same manner as all-or-nothing tasks could create

5-11

considerable overhead for the runtime executive and cause degraded performance. Accounting for the
closure time in advance limits the stress on the executive and subsequent impact on system performance.

Ada83 provides two methods to cause a task to abandon its normal execution path: abort and
exception. However, both of these methods have limitations that make them inappropriate for use in the
runtime software [Baker, 1989:19]. First, no method exists for passing an exception from one task to
another. A method did exist in the 1980 version of the Ada Language Reference Manual, but it was
removed in 1983. Second, using the abort command results in a terminated process that cannot be
restarted without using extremely slow task creation.

Overcoming the deficiencies of Ada83 can be accomplished using one of two techniques. The
first technique allows the executive task to create an exception in the cyclic task by setting some value in a
manner that would cause an exception, such as setting the dividend of the division operation to zero to
cause a floating point error. To use this technique, the cyclic task must setup checkpoints throughout its
code to generate the exception. This process is both inefficient and a poor software design. The second
technique allows the executive task to set a flag in the cyclic task. This technique still requires the cyclic
task to setup checkpoints, but allows the task to handle the early stopping without costly Ada exceptions
and out of place division operations. The code segment in Figure 5.6 illustrates the latter options used in

implementing the generic-task.

task body doit is

—-local wvariables
begin

accept initialize task;

loop
accept start_next_cycle do
—— do initialization
end start next_cycle;

while stopwork = FALSE loop
-~ do work exit when done
end loop;
—-— do clean-up
end loop;
end doit;

Figure 5.6: Stop-Work Code Segment
Since the runtime executive never really knows where in the execution loop the cyclic tasks are,

it must assume the worst case, where the task has just begun executing when the stop-work flag is set.

5-12

Therefore, the executive must set the stop-work flag a minimum of one loop duration prior to the desired
stop time. However, the executive cah only issue commands at fixed intervals (usually imposed by
hardware and software constraints). Because of this, the stop-work cbmmand can only be issued at times
that are a multiple of the executive resolution. The difference between the time resolution of the executive

and the loop duration can result in lost performance.

Performance L oss Due to Implementation
and Executive Resolution

1000 @

03900 ——— 0010

0500 —@—— 0009
¢

—0—— 0008
0.00

\\
0600 \\\ ———— 0007
s A\ —o— 0208
0400 \\:\ oo

\\ O 0004

———— 0003

Loss

0300

0260

—O— 0002

000 -—{3—0001

0000 4 t t ? -+ T T T
0.010 0020 0030 0040 0050 0060 0070 0080 0090 0180

Duration (Sec)

Figure 5.7: Partial-Solution Performance Loss Due to Implementation
Figure 5.7 graphs the lost performance for several resolutions and task durations. This graph
measures the amount of time that is lost, not a loss in solution quality. Determining the lost solution
quality requires locating the original time minus the lost time on to the task performancé curve. With an
executive resolution of 0.01 second and task durations less than 0.05 second, partial-solution tasks lost

more than 80% of their processing time. Translated to the Linear curve, this restricts the partial-solution

» processes to achieving a solution quality no higher than 0.20. The Conservative curve is even worse, with

a maximum quality of 0.01. This reduction in solution quality is the cause of the degraded performance

measured by metric 1.

5.2.6 Extended RuntimeTest Results. In response to the original analysis results, the test
plan was extended to include nine additional tests. The new tests were designed to simulate the impact of

a small amount of domain knowledge on the performance of the partial-solution tasks. The new tests

5-13

were identical in form to the original tests, but limited implementation of partial-solution tasks to those

cyclic tasks with durations greater than 0.05 second. Selecting 0.05 second was based on the time
resolution of the execﬁtive and the performance loss graph shown in Figure 5.7. This time represents the
knee of the curve where loss due to implementation starts to flatten out.

Results from the nine extended tests are shown in Table 5.4 and Appendix D. These results show
improvements in metric 1, over the initial test, for both the Conservative and Linear curves.

Table 5.4: Extended Test Results
Cyclic-Quality Cyclic-Deadlines | Sporadic-Quality { Sporadic-Deadlines
(metric 1) (metric 2) (metric 3) (metric 4)

Curve Test + ~ - ~ - + ~ - + ~ -
Conservative | Duration
Frequency
Response
Linear Duration
Frequency
Response
Optimistic | Duration
Frequency
Response
Random Total

GAP Total

W=

0 0
0 0

o |T|w |||
elvelw|w| ||t joe oW+
ololw|w|w|ww ||| |w
olve]w|w |t |td|d |ty |

3 0 0] 0 0
310 0 j O

0
0 0

Test results for the extended Conservative tests show a positive increase in solution quality for
both the randomly generated and GAP requirements. However, even with the application of simulated
domain knowledge, the partial-solution tasks are still unable to perform better than the all-or-nothing
tasks. Results frém the Linear tests show marginally better performance for the randomly generated
requirements. These 10 systems moved from the unchanged category into the positive category by
achieving a 20% increase in solution quality over the equivalent all-or-nothing systems.

The most significant improvements measured by metric 1 occur in the Ijnear-erquehcy and
Optimistic-Frequency extended testsv. In these two tests, the solution quality of the GAP requirements was
increased on average by 50%. In some situations, these two tests achieved improvements as high as 90%
to 120% better than their all-or-nothing counterparts. In addition, both tests, which are shown in Figures
5.8 and 5.9, suggest increased robustness since the percentage of improvement ténds to increase as the

requirements increase.

5-14

S poradic Frequency vs S olution Qudity
(All-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen —— R-P-PMen

Sporadic T ask Frequency (T asks /S ec)

S poradic Frequency vs S olution Qudlity
(All-O1-Nothing vs P artial-S olution - GAP)

GA-PMen —B—— GP-PMen

ik

0.2000

:

0£000

Tash Selstion Buality

HiE

Sporadic T ask F requency (T asks /S ec)

S poradic Frequency vs Percent improvement
{Random vs GAP)

EETSERavom —@—aAP

T0O00%
80.00%
6000%
4000% = -

cooox ==

I

00.00% qeenali
-2000%
-4000%.
-60.00%
-80.00%.

-00.00%

Perceat Improvement

b 1] ® 20 26 30 35 4 45 8
Sporadic T ask Frequency (T asks /S ec)

- Figure 5.8; Extended Linear-Frequency Metric 1
On the negative side, Figure 5.9 shows that there is a decrease in the solution quality, for the
randomly generated Optimistic test, from 20% to 16% whén compared with the original test. This result
reemphasizes the important relationship between task performance curves and partial-solution

performance.

5-15

S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs P articl-S olution - Random)

R-A-PMan ~—M—— R-P-PMecn

i

Task Selation Guality
&
8

20 30
Sporadic Y ask Fraquency (T asks /S ec)

S poradic Frequency vs S olution Qudlity
(All-Or-Ncothing vs P artic-S olution - GAP)

GAPMen —8—— GP-PMen

Task Selution Buality

20 25 30
Sporcdic Task Frequency (Tasks /S ec)

S poradic Frequency vs Percent Improvement
(R andom vs GAP)

ETTENI Rodom ——#—— GAP

e e e W B i B 8 i B i B i

P]

Percest Improvement

ShaBRRBRASERRRES

e

5] B 2 26 30 36 40 45 2]
Sporedic Task Frequency (T asks /S ec)

Figure 5.9: Extended Optimistic-Frequency Metric 1
Additional cost can also be seen, in all nine tests, in the increased number of missed cyclic-
deadlines (metric 2). However, this is expected, since some of the previous partial-solutiqn tasks are now
implemented as all-or-nothing tasks.
53 Summary of Results
From a domain-iﬁdependent perspective, the results presented in this chapter indicate that

partial-solution tasks can increase the schedulability, maintainability and robustness of real-time systems.

5-16

In the pre-runtime schedulability demonstration, the degraded performance of the partial-soliltion
Graphic-Display allowed the scheduler to generate a feasible schedule when none would have existed
using all-or-nothing techniques. As additional tasks were added during the maintainability
demonstration, the scheduler continued to generate feasible schedules by continuing to degrade the
mﬁprﬁmw of the Graphic-Display. Only when the utilization requirements exceeded the capability of
the partial-solution task was it necessary to add additional resources.

Results from the runtime robustness test appear to be more subjective. If decreasing the number
of missed deadlines is the goal, then partial-solution tasks seem quite effective. However, if increasing
solution quality is the primary concern, results will depend largely on domain-specific characteristics,

such as task performahce curves, task durations, and executive resolution.

5-17

VI - Conclusion and Recommendations

The primary objective of this research was to show through example and experimentation the
benefits associated with developing real-time systems using partial-solution techniques in conjunction
with all-or-nothing techniques. In particular, the research focused on demonstrating the potential for
increased schedulability, maintainability and robustness. This chapter summarizes the important results

presented in Chapter V and provides recommendations for follow-on work.

6.1 Conclusions

The results presented in Chapter V support the research hypothesis that partial-solution tasks can
increase the schedulability, maintainability, and robustness of some real-time systems. In particular, the
research shows that partial-solution tasks can be used to generate feasible schedules under conditions
where all-or-nothing techniques would fail. Furthermore, it shows that partial-solution tasks can increase
system maintainability by allowing the scheduler to degrade the performance of the partial-solution tasks
in order to accommodate unexpected requirements. During the runtime test it was also shown that
partial-solution tasks have the potential for decreasing the number of missed deadlines and increasing a
system's average solution quality.

Even though the results presented in this research appear promising, they need to be kept in
perspective. Due to a lack of domain-specific requirements and the underlying assumption that tasks are
independent, the results may be misleading. For most systems, task dependencies are unaQoidable and
domain requirements dictate which tasks, if any, can be implemented using partial-solution techniques.

Domain-specific knowledge is also necessary to determine at what level the performance of the
partial-solution task becomes unacceptable. For example, it would be unacceptable if the Graphic-Display
used in the pre-runtime experiment was unable to update a critical system display with its performance
degraded by more than 50%.

Another important result of the research is the correlation between the shape of the performance

curve and the impact of the partial-solution task on the performance of the system. The research indicates

6-1

that tasks achieving most of their quality early during their execution are more likely to lead to increased
system performance under unpredictable and dynamic conditions.

Finally, this research has resulted in theory, tools, and techniques for the general case while
providing the ability to overlay the specific case. As more domain-specific information becomes available,

these theories and tools can be used to generate performance perdictions for particular cases.

6.2 Recommendations for Future Work

One of the objectives of this research was to determine if partial-solution tasks have domain-
independent characteristics that allow them to improve‘ the performance of a real-time system. Finding a
domain-independent technique could lead to a reduction in the cost and effort required to build next-
generation systems, by eliminating the need to gather domain-specific information. However, the research
does not provide any major breakthroughs. Rather, it uncovers a need for improved techniques for
analyzing and recording the specific characteristics of real-time systems.

John Stankovic points out that there is no need to treat a task as a random process [Stankovic,
1990]. Many characteristics of tasks (such as their timing and resource requirements) can be determined
a priori and utilized at runtime. Future research should focus some attention on the areas of criticality
and acceptable degradation, since it is these characteristics that will ultimately be used by the intelligent
scheduler to determine which tasks to schedule and how much to degrade each task.

Due to timing and resource constraints, several key design decisions were made in this research
that forced the assumption of an overly simplified real-time environment. First, the unreliability of the
UNIX operating system makes it impossible to enforce real-time guarantees in a rigorous fashion.
Second, the Silicon Graphics clock resolution makes it impossible to generate the precise timing accuracy
required »by many real-time tasks. Finally, the randomly generated cyclic schedules, task importances,
task durations, and task response times and the assumption of task independence may not reflect the true
characteristics of next-generation real-time systems.

Overcoming the reliability of the operating system and improving the clock resolution could be

achieved by porting the runtime executive from the UNIX general-purpose operating system to a real-time

6-2

operating system. A system that has just recently been made available is the Maruti operating system
being developed at the University of Maryland [Agrawala, 1994]. Maruti provides a comprehensive set of
tools for developing mission-critical real-time systems.' The current version of the operating system (2.1)
runs on a 486 AT/PC platform and includes a full set of tools to prepare and profile real-time applications.
Information on acquiring Maruti can be obtained by sending electronic mail to professor Ashok Agrawala
(agrawala@cs.umd.edu).

An alternative approach to improving the existing software would be to combine the efforts of
this Institution (AFIT) with additional efforts being conducted at universities throughout the country.
Several of these universities have atready developed relatively vsophisticated architectures for performing
intelligent real-time control.‘ By cooperating with these institutions it would allow follow-on research to

focus its attention on domain requirements, by minimizing the need to address implementation issues.

Al

Appendix A - Random Task Requirements

Description

This appendix describes the timing and importance requirements randomly generated for the

runtime schedulability and robustness tests.

A2 Random Task Requirements
Table A.1: Random Task Requirements
Schedule 0 Schedule 1 Schedule 2 Schedule 3
Task Priority | Duration | Priority I Duration | Priority | Duration | Priority | Duration
Task0 N 0.04 E 0.03 C 0.09 E 0.02
Taskl C 0.08 E 0.03 C 0.04 C 0.04
Task2 N 0.02 E 0.06 C 0.08 - E 0.10
Task3 E 0.02 C 0.04 N 0.04 C 0.02
Task4 E 0.08 E 0.09 E 0.03 C 0.02
Task5 C 0.08 N 0.02 N 0.06 E 010
Task6 N 0.10 E 0.08 C 0.07 C 0.05
Task7 E 0.10 N 0.07 E 0.03 E 0.02
Task8 E 0.10 E 0.06 E 0.02 E 0.08
Task9 C 0.02 E 0.02 C 0.10 N 0.03
Schedule 4 Schedule 5 Schedule 6 Schedule 7
Task | Priority | Duration | Priority | Duration | Priority | Duration | Priority | Duration
Task0 E 0.02 N 0.08 E 0.05 N_ | o0
Taskl E 0.02 E 0.07 N 0.10 C 0.09
Task2 E 0.02 C 0.10 C 0.05 N 0.03
Task3 E 0.10 C 0.06 E 0.06 N 0.08
Taskd E 0.02 E 0.05 E 0.06 C 0.09
Task5 E 0.04 C 0.03 E 0.02 E 0.07
Task6 N 0.02 N 0.08 N 0.07 C 0.07
Task7 E 0.02 E 0.05 C 0.07 C 0.02
Task8 E 0.02 N 0.05 E 0.07 E 0.10
Task9 C 0.05 C 0.02 E 0.09 E 0.02
Schedule 8 Schedule 9 Schedule GAP
Task | Priority | Duration | Priority | Duration | Priority | Duration
Task(N 0.08 N 0.02 N 0.00
Taskl C 0.09 - N 0.02 E 0.05
Task2 E 0.02 E 0.06 N 0.05
Task3 N 0.06 N 0.02 N 0.08
Task4 C 0.08 C 0.09 C 0.09
Task5 E 0.02 E 0.02 C 0.05
Task6 C 0.07 N 0.08 C 0.01
Task7 E 0.09 N 0.05 N ~0.03
Task8 E 0.05 E 0.06 N 0.01
Task9 C 0.02 N 0.10 N 0.03

B.1 Description

This appendix presents results from the pre-runtime schedulability and maintenance
demonstration. Results are presented in chronological order and were generated using the pre-runtime

schedulability software described in Chapter IV. A written summary of the results can be found in

Chapter V.

Appendix B - Pre-Runtime Results

B.2 Original GAP Schedule

NIL

> (print-schedule 1 tl t2 t3 t4 t5 t6 £7 t8 t9 t10 t11 t12 t13)

Figure B.1: Infeasible GAP Schedule

B.3 GAP Schedule with Modified Graphic-Display

Importance Processor
3 1
3 1
3 1
2 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

—> (print-schedule 1 tl t2 t3 t4m t5 t6 t7 £8 t9 t10 tll tl1l2 t13)

Processor #1
Name Period Duration Priority
KEYSET 0.2 0.001 38
GRAPHIC DISPLAY 0.08 0.005 36
TARGET UPDATE_II 0.1 0.005 37
CONTACT_MGNT 0.025 0.005 31
STATUS_UPDATE 0.2 0.003 41
HOOK_UPDATE 0.065 0.002 35
STORES_UPDATE 0.2 0.001 40
TARGET UPDATE I 0.05 0.005 33
TRACKING_FILTER 0.025 0.002 32
NAV_UPDATE 0.059 0.008 34
STEERING CMDS 0.2 0.003 39
NAV_STATUS 1.0 0.001 42
STATUS_UPDATE_II 1.0 0.001 43
Util [0.7008624511082139]
Max Util [0.7119589942614066]

Figure B.2: GAP Schedule with Modified Graphic-Display

B-1

B4 GAP Schedule with Modified Graphic-Display and Maintainance Requirements

> (print-schedule 1 tl t2 t3 td4m t5 t6 t7 t8 t9 t10 t11l tl2 tl1l3 tl-extra)

Processor #1

Name Period Duration Priority Importance Processor
KEYSET 0.2 0.001 38 3 1
GRAPHIC DISPLAY 0.08 0.005 36 3 1
TARGET_UPDATE_II 0.1 0.005 37 3 1
CONTACT_MGNT 0.025 0.005 31 2 1
STATUS_UPDATE 0.2 0.003 39 1 1
HOOK_UPDATE 0.065 0.002 35 1 1
STORES_UPDATE 0.2 0.001 40 1 1
TARGET _UPDATE_I 0.05 0.005 33 1 1
TRACKING_FILTER 0.025 0.002 32 1 1
NAV_UPDATE 0.059 0.008 34 1 1
STEERING_CMDS 0.2 0.003 41 1 1
NAV_STATUS 1.0 0.001 43 1 1
STATUS_UPDATE_II 1.0 0.001 44 1 1
COLLISION MONITOR 0.2 0.0003 42 1 1

Util [0.7023624511082137]
Max Util {0.7105929411450722]

Figure B.3: Modified GAP with One Maintenance Task

> (print-schedule 1 tl t2 t3 t4m t5 té6 t7 t8 t9 £10 t1l tl12 t13
tl-extra t2-extra)
Processor #1

Name Period Duration Priority Importance Processor
KEYSET 0.2 0.001 38 3 1
GRAPHIC DISPLAY 0.08 0.004 36 3 1
TARGET UPDATE_II 0.1 0.005 37 3 1
CONTACT_MGNT 0.025 0.005 31 2 1
STATUS_UPDATE 0.2 0.003 39 1 1
HOOK_UPDATE 0.065 0.002 35 1 1
STORES_UPDATE 0.2 . 0.001 40 1 1
TARGET UPDATE I 0.05 0.005 33 1 1
TRACKING_FILTER 0.025 0.002 32 1 1
NAV_UPDATE 0.059 0.008 34 1 1
STEERING_CMDS 0.2 0.003 41 1 1
NAV_STATUS 1.0 0.001 43 1 1
STATUS_UPDATE_II 1.0 0.001 44 1 1
COLLISION MONITOR 0.2 0.0003 42 1 1
PILOT MANAGER 1.0 0.0081 45 1 1
Util [0.6979624511082138]

Max Util [0.7094118423094009]

Figure B.4: Modified GAP with Two Maintenance Tasks

> (print-schedule 1 tl1 t2 t3 t4 t5 t6 t7 t8 t9 t10 tll tl12 t13
tl-extra t2-extra t3-extra)

Processor #1

Name Period Duration Priority Importance Processor
KEYSET 0.2 0.001 38 3 1
GRAPHIC DISPLAY 0.08 0.002 36 3 1
TARGET UPDATE_II 0.1 0.005 31 3 1
CONTACT MGNT 0.025 0.005 31 2 1
STATUS_UPDATE 0.2 0.003 39 1 1
HOOK_UPDATE 0.065 0.002 35 1 1
STORES_UPDATE 0.2 0.001 40 1 1
TARGET UPDATE_I 0.05 0.005 33 1 1
TRACKING_FILTER 0.025 0.002 32 1 1
NAV_UPDATE 0.059 0.008 34 1 1
STEERING_CMDS 0.2 0.003 41 1 1
NAV_STATUS 1.0 0.001 43 1 1
STATUS_UPDATE_II 1.0 0.001 44 1 1
COLLISION MONITOR 0.2 0.0003 42 1 1
PILOT MANAGER 1.0 0.0081 45 1 1
TACTICAL MANAGER 1.0 0.0269 46 1 1
Util [0.6998624511082138]

Max Util [0.7083805188386201]

Figure B.5: Modified GAP with Three Maintenance Tasks

> (print-schedule 1 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 tll t12 t13
tl-extra t2-extra t3-extra t4-extra)

NIL

Figure B.6: Modified GAP with Four Maintenance Tasks and One Processor

> (print-schedule 2 tl t2 t3 t4m t5 t6 t7 t8 t9 t10 t11l t12 t13
tl-extra t2-extra t3-extra td-extra)

Processor #1

Name Period Duration Priority Importance Processor
NAV_UPDATE 0.059 0.008 31 1 1
EOB_MANAGER 1.0 . 0.1331 32 1 1
Util [0.268693220338983]

Max Util [0.8284271247461899]

Processor #2

Name Period Duration Priority Importance Processor
KEYSET 0.2 0.001 37 3 2
GRAPHIC DISPLAY 0.08 0.009 35 3 2
TARGET_UPDATE II 0.1 0.005 36 3 2
CONTACT_MGNT 0.025 0.005 31 2 2
STATUS_UPDATE 0.2 0.003 38 1 2
HOOK_UPDATE 0.065 0.002 34 1 2
STORES_UPDATE 0.2 0.001 39 1 2
TARGET UPDATE_1I 0.05 0.005 33 1 2
TRACKING_FILTER 0.025 0.002 32 1 2
STEERING_CMDS 0.2 0.003 40 1 2
NAV_STATUS 1.0 0.001 42 1 2
STATUS_UPDATE_II 1.0 0.001 43 1 2
COLLISTION MONITOR 0.2 0.0003 41 1 2
PILOT MANAGER 1.0 0.0081 44 1 2
TACTICAL MANAGER 1.0 0.0269 45 1 2
Util [0.6517692307692307]

Max Util [0.7094118423094009]

Figure B.7: Modified GAP with Four Maintenance Tasks and Two Processors

B-3

Appendix C - Initial Runtime Results
Cl1 Description

This appendix presents tabular and graphical results from the scheduled phase of the runtime
schedulability and robustness test. These results, which are referred to as the initial results, were gathered
by experimentally measuring the impact of partial-solution tasks on eleven simulated mﬂ-ﬁme systems
(schedules), each of which contained ten cyclic tasks. In total, nine tests were run on each simulated
systems:

Conservative Performance - Fixed Frequency.Test
Conservative Performance - Fixed Duration Test
Conservative Performance - Fixed Response Test
Linear Performance - Fixed Frequency Test
Linear Performance - Fixed Duration Test

Linear Performance - Fixed Response Test
Optimistic Performance - Fixed Frequency Test
Optimistic Performance - Fixed Duration Test
Optimistic Performance - Fixed Response Test

Data for all-or-nothing tasks was collected by running the cyclic executive for 20 cycles with all
cyclic tasks implemented as all-or-nothing tasks. Data for the partial-solution tasks was collected in the
same manner as the all-or-nothing tasks, only in this sitnation with all cyclic tasks implemented as
partial-solution tasks.

Results presented in this section have been classified by task performance curve, test type, metric,
and tasking requirement. GAP results were calculated by averaging the performance data over one GAP
schedule of 10 cyclic tasks. Random results were calculated by averaging the performance data over the
10 random schedules of 10 cyclic tasks.

A short description of terms used in these results is provided in Table C.1. A written summary of

the results can be found in Chapter V.

Table C.1: Key

Metric 1 Average solution quality for cyclic tasks
Metric 2 Percent of missed deadlines for cyclic tasks
Metric 3 Average solution quality for sporadic tasks
Metric 4 Percent of missed deadlines for sporadic tasks
+ Improved quality or decreased missed deadlines
~ No change in quality or missed deadlines
- Degraded quality or increased missed deadlines
R Random task requirements
G GAP task requirements
B Both random and GAP task requirements
R-A-PMean |Mean value for cyclic all-or-nothing random tasks
R-P-PMean |Mean value for cyclic partial-solution random tasks
G-A-PMean {Mean value for cyclic all-or-nothing GAP tasks
G-P-PMean jMean value for cyclic partial-solution GAP tasks
C2 Tabular Results
Table C.2: Runtime Results
Cyclic-Quality Cyclic-Deadlines | Sporadic-Quality | Sporadic-Deadlines
(metric 1) (metric 2) " (metric 3) (metric 4)
Curve Test + ~ - + ~ - + ~ - + ~ -
Conservative| Duration B B B B
Frequency B B B B
Response B B B B
Linear Duration B B B B
Frequency B B B B
Response B B B B
Optimistic | Duration R G B B B
Frequency {| B B B B
Response | B B B B
Random Total] 3 2 4 9 0 0 0 9 0 0 9 0
GAP Total]l 2 3 4 9 0 0 0 9 0 0 9 0

CJ3

Conservative Results - Metric 1

S poradic Durdation vs S olution Qudlity
(All-Or-Nothing vs P artid-S olution - R andom)

R-APMen ——B—— R-P-PMemn

006 o0o7
Sporadic Tesk Duration (S ec)

S poradic Durdlion vs S olution Qudlity
(All-Or-Nothing vs P artidl-S olution - GAP)

GAPMen —— GP-PMen

i

Task Solution @

:" w;

004 006 006 007 - opos
Sporadic Task Duration (S ec)

DOOO%

S poradic Durdtion vs Percent improvement
(R andom vs GAP)

B Rarcom ——#— GAP

80.00%

6000%

4000%

20.00%.

00.00% 4
-20.00%4
-4000%

-60.00% 4
-80.00%.

Percent Improvement

T

- T i ey

-D0.00%

oot

002

[e]o}] 004 006 006 007 008
Sporadic Task Duration (S ec)

009 0.1

Figure C.1: Conservative-Duration Metric 1

S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen —— R-P-PMem

Sporadic Task Frequency (T asks /S ec)

S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs P articl-S olution - GAP)

GAPMen ——— GP-PMen

Task Lelutioa Quality

25 30 35
Sporadic Task Frequency (T asks /S ec)

S poradic Frequency vs Percent Improvement
® andom vs GAP)

TR Rardom ——M—— GAP

V000%.
8000%
60.00%
4000%
2000%.
00.00% 4 vy

~40.00%. el
$0.00% \'\\I—**J
-80.00%
-00.00%

Perceat Improvemeat

5 0 | 20 25 30 36 40 a5
Sporadic T ask Frequency (T asks /S ec)

Figure C.2: Conservative-Frequency Metric 1

C4

S poradic Response vs S olution Qudity
(All-Or-Nothing vs P artial-S olution - R andom)

R-A-PMen —B——R-P-PMen

Tusk Selution @

Sporadic Tewk Response (S ec)

S poradic R esponse vs S olution Qudlity
(All-Or-Nothing vs P artial-S olution - GAP)

GA-PMen ——— GP-PMem

Tash Selution

Sporcdic Task Response (S ec)

D0.00%

S poradic Response vs Percent Improvement
(R andom vs GAP)

SN Radom ——l— AP

8000%
60.00%

4000%

2000%

-40.00%

0000%4
-20.00% 4 E

T

-60.00%

k.\‘sS

gl

Ly

Perceat Improvement

-80.00%
-m m(

001

002 0038 004 005 006 007 008
Sporadic Task Response (S ec)

ap09

0.1

Figure C.3: Conservative-Response Metric 1

C4 Conservative Results - Metric 2

S poradic Durdtion vs Percent Missed Deadines
(All-Or-Nathing vs P artidl-S olution - R andom)

R-APMen —B—— R-P-PMecn

Perceat Missed
DeudBines

001 K 004 006
Sporadic Task Duration (S ec)

S poradic Durdtion vs Percent Missed Deadines
(All-Or-Nothing vs P artidl-S olution - GAP)

GA-PMen —B—— GP-PMen

0.5000
0.8000
0.2000
06000
0.5000
0.4000
0.3000 +
0.2000 4 5
0.000 1§ 3 44 s o % 3 & 3 2 3

% ?g

oo
S

Percent Missed
Deadlines

Sporadic T ask Duration (S ec)

S poradic Duration vs Percent Improvement
(R andom vs GAP)

DOOO%
80.00%:
60.00% 4o
40.00%4
2000%4
00.00%4
_-2000%
~40.00%
-$000%
-80.00%
-100.00%.

Perceat Inprovement

001 002 (i3] 004 006 086 007 008 009 0.1
Sporadic Task Duration (S ec)

Figure C.4: Conservative-Duration Metric 2

Sporadic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - R andom)

R-APMen ——B—— R-P-PMen

10000
05000
° 0.8000
® s 07000
L]
- 1; 046000
¥ 3 om0
£ 04000
< o i
- " 2 > &
55000 _m el TR THER | Ry
5] B 20 26 30 35
Sporadic Task Frequency (T asks /S ec)
S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - GAP)
GAPMan ——B—— GP-PMen
10000
05000
w 08000
® , 07000
£ 4 0s000
f'a 0.5000
$ & oa000
£ 2 03000
[oo .
m :\.
20 26 k
Sporadic Task Frequency (T asks /S ec)
S poradic Frequency vs Percent Improvement
(R andom vs GAP)
N Rardom ——— GAP
DOOO%
%
-
£
; -20.00%
$ -4000%
§ 000
a8 -3000%
-D0.00%

D -B

20 26 30 35 40
Sporadic T ask Frequency (T asks /S ec)

Figure C.5: Conservative-Frequency Metric 2

C-7

S poradic Response vs Percent Missed Deadiines
(All-Or-Ncthing vs P artid-S olution - R andom)

R-APMen —B—— R-P-PMem

10000
05000
w 0.8000
2 » 0000
g 4 06000
TS 05000
]
£a
a e ey v 3 - pren R
2y S 3 3 +q
il Bl ol B

002 003 0p4 006 006 o7 008 009
Sporadic Task Response (S ec)

S poradic Response vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - GAP)

GA-PMen ——— GP-PMemn

10000
05000
0.8000
0.7000
046000
0800
04000
0.3000

Dendli

Perceat Missed

004 006 006 097 008 009 A}
Sporadic Task Response (S ec)

S poradic Response vs Percent Improvement
R andom vs GAP)

NI Radom ———— GAP

Percent Inprovement

001 002 [s]¢1] 0Db4 006 006 007 008 009 0.1
Sporadic Task R ssponse (S ec)

Figure C.6: Conservative-Response Metric 2

CS

Linear Results - Metric 1

Tash Solution @

Hit

i

o0
33

S poradic Durdation vs S olution Qudlity
(All-Or-Ncthing vs P artid-S olution - R endom)

R-A-PMen ————R-P-PMem

i

006 006 007 008 009 [+A]
Sporadic T ask Duration (S oc)

Task Selstion Buality

S poradic Duration vs $ olution Qudlity
(All-Or-Nothing vs Partiadl-S olution - GAP)

GAPMen ———— GP-PMecn

2R0B
b
004 006 006 007 008 009 01
Sporadic T ask Duration (S ec)

Percent lmprovement

S poradic Durdlion vs Percent Improvement
R andom vs GAP)

EESST Rodom ——#—— AP

DOOO%

8000%

60.00%
4000%

20.00%.
00.00% 4
-2000%4
~40.00%

~ el oo B cosoocor b B <ososse
]

-60.00%

-80.00%

-D0O0%

o1

002 003 004 006 006 007 008 009 0.1
Sporadic Task Duration ¢S ec)

Figure C.7: Linear-Duration Metric 1

S poradic Frequency vs S olution Qudlity
(All-Or-Nathing vs P artid-$ olution - R andom)

R-APMen ———— R-P-PMem

Task Selutien Buality

25 30
Sporadic Task Frequency (T asks /S ec)

S poradic Frequency vs S olution Quadiity
(All-Or-Nothing vs P artial-S olution - GAP)

GAPMen — B GP-PMen

0.5000
0.8000
0.2000
0.6000
0.8000
0.4000
0.3000
0.2000
0.1000
0.0000

Task Selatioa Quality

26
Sporadic T ask Frequency (T asks /S ec)

V0.00%

Sporadic Frequency vs Percent Improvement
(R andom vs GAP)

BT Radom ——— GAP

80.00%.
6000%

4000%

2000%
00.00%+
-20.00%

-40.00%.
-6000%

Perceat improvement

-80.00%.

-100.00%.

1 B 20 26 30 36 40 45 o0
Sporadic T ask Frequency (T asks/S ec)

Figure C.8: Linear-Frequency Metric 1

C-10

. S poradic Response vs S olution Qudlity
(Al-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen ——— R-P-PMem

Sporadic Tosk Response (S ec)

>
2
%
K]
“
-
2
-
004 006 006 007
Sporadic Task Response (S ec)
S poradic Response vs S olution Qudlity
(All-Or-Nothing vs P artiad-S olution - GAP)
GA-PMen ——— GP-PMen
&
3
o
a
2
[
K
“
L3
»
-
005 009 0.1
Sporadic Task Response (Sec)
S poradic Response vs Percent Improvement
(R andom vs GAP)
ESE Radom ——— AP
DO.00%
4 80.00%
§ 6000%
¢ 4000%
¢ 2000%
j- gggz. el ey = e - -
% -a000%
§ 6000%
& -8000%
-D0.00%
001 002 008 004 005 006 007 008 009 0.1

Figure C.9: Linear-Response Metric 1

C-11

C.6 Linear Results - Metric 2

Percest Missed
Deadlines
:

S poradic Duration vs Percent Missed Deadines

(All-Or-Nothing vs P artidl-S olution - R andom)

R-A-PMey ——8—— R-P-PMem

008 004 0086 006 007 008
Sporadic Task Duration (S ec)

009 0.1

Percest Missed

10000
05000
0.8000
0.2000
0.6000
05000
04000
0.3000
0.2000
0.1000
00000

Deadli

S poradic Duration vs Percent Missed Deadlines

(All-Or-Nothing vs P artid-S olution - GAP)

GAPMen —B— GP-PMen

002 003 004 005 006 007 0os8
Sporadie Task Duration (S ec)

Percest Improvement

00O.00%
80.00%.

-2000%.

S poradic Durdation vs Percent Improvement
(R andom vs GAP)

R Rodom —W—— AP

Yatreniasats

-40.00%

-60.00%

-80.00%.

-100.00%

oo

002 003 004 006 006 007 ocns
Sporadic Task Durction (S ec)

009 0.1

Figure C.10: Linear-Duration Metric 2

C-12

S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artial-S olution - R andom)

R-APMen — 83— R-P-PMen

10000
05000
L] 0.8000
2 o 07000
& § 06000
By
¢ & o.4000
£ 9 03000
& 02000 prervery s
0.000 E ey %
O e T T e
5 D] 20 26
Sporadic T ask Frequency (T asks/S ec)
S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - GAP)
) 6A-PMen ——— GP-PMen
10000
05000
- 0.8000
% o 07000
§ j 0.6000
* § 0800
$ $ 04000
5 9 03000
-9
2 3 ,
.
20 26
Sporadic T ask Frequency (T asks /S ec)
S poradic Frequency vs Percent Improvement
(R andom vs GAP)
T Radom —®—— GAP
D0.00%
% 8000%4
¢ coooxdiEs
¢ 2000%4bE
0 2000% S+
i- 0000% ek
- -2000%
% -4000%-
¢ s000%
o -8000%
-10.00%

5)¢ B 20 26 80 86 40 45 &
Sporadic Task Frequency (Tasks /S ec)

Figure C.11: Linear-Frequency Metric 2

C-13

Percent Missed

Deadlines

S poradic Response vs Percent Missed Deadines
(Deteministic vs terative « R andom)

R-APMen ——— R-P-PMen

10000
0.9000

0.86000

0.7000

06000
08000

0.4000

0.3000
0.2000

0.100 -
0.0000 &

— %

Lt

008 009

002 008 004 006
Sporadic Task Response (S ec)

Percest Missed

Dendlines

10000

S poradic Response vs Percent Missed Deadiines
(All-Or-Nothing vs P artid-S olution - GAP)

GAPMen — I GP-PMen

0.5000

0.8000

0.2000
06000

05000

oo

002 003 004 006 0Dé 007 008
Sporadic Task Response (S ec)

Percest Improvement

V000%

S poradic Response vs Percent Improvement
(R andom vs GAP)

SRR Rerdom —— M GAP

8000%

6000% 4
40 00% oF
2000% <=+
00.00% 4

-20.00%.
~40.00%.

-60.00%

-80.00%

-00.00%
001

002 003 004 006 006 007 008 009 0.1
Sporadic Task Response (S ec)

Figure C.12: Linear-Response Metric 2

C-14

C.7

Optimistic Results - Metric 1

Tusk Selution

S poradic Duration vs S olution Qudlity

(Al-Or-Nothing vs P artid-S olution - Random)

IR-A-PMen — B R-P-PMen

006 006 007
Sporadic Task Duration (S ec)

Tash Salution Quslity

S poradic Durdlion vs S olution Qudity
(All-O1-Nothing vs P articdl-S olution - GAP)

GAPMen —B—— GP-PMen

004 005 006 007
Sporedic Task Duratlon (S ec)

Percent Improvement

V0.00%

S poradic Duration vs Percent improvement
(R andom vs GAP)

EEEE Radom ———— AP

80.00%.

6000%

A000%

20.00% 4
00.00% 4
-20.00%

N e - ==

-40.00%

-60.00%

-80.00%

-100.00%

oo

002 0ns 004 006 Q06 007 [870].)
Sporadic Task Duration (S ec)

009

0.1

Figure C.13: Optimistic-Duration Metric 1

C-15

Task Solatien @

S poradic Frequency vs S olution Qudlity
(AllI-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen ———R-P-PMen

25
Sporadic T ask F requency (T asks /S ec)

Tash Selution Quality

S poradic Frequency vs S olution Qudlity
(All-Or-Nathing vs Partial-S olution - GAP)

GAPMen ——M—— GP-PMen

20
Sporadic Task Frequency (T asks /S ec)

Percest Improvement

S poradic Frequency vs Percent Improvement
(R andom vs GAP)

S Radom — B eAp

0VO00%
8000%

60.00%

4000%
2000%

00.00% 4
-20.00%.

-4000%.

-60.00%.

-80.00%

~100.00%.

D B 20 26 30 36 40 45 -]
Sporexlic Task Frequency (T asks /S ec)

Figure C.14: Optimistic-Frequency Metric 1

C-16

S poradic R esponse vs S olution Qudlity
(All-Or-Nothing vs P artia-S olution - R andom)

R-A-PMen ——E—— R-P-PMen

006 007
Sporadic Task Response (S ec)

Tash Selstios Quality

S poradic Response vs S olution Qudlity
(All-Or-Nothing vs P artidl-S olution - GAP)

GAPMen —B—— GP-PMemn

0056
Sporcdic Task Response (S ec)

Perceat Inprorement

D0.00%
80.00%

S poradic Response vs Percent Improvement
(R andom vs GAP)

EEREE Radom ——@—— GAP

60.00%

4000% 4
2000%+
0000%4

-20.00%.

Tt

-40.00%

-60.00%

-80.00%

-00.00%.

001

002 003 0p4 006 006 0407 o008 009 01
Sporcdic Task Response (S ec)

Figure C.15: Optimistic-Response Metric 1

C-17

C38

Optimistic Results - Metric 2

Percest Missed

10000
09000
0.8000
0.7000
0.46000
0800
0.4000

Deadlises

S poradic Duration vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen —B——R-P-PMem

006 006 007 008
Sporadic Task Durction (S ec)

Percest Missed

10000
0.9000
0.8000

S poradic Durdlion vs Percent Missed Deadlines
(All-Or-Nothing vs P artial-S olution - GAP)

CGA-PMen —— 81— GP-PMem

006 006 007
Sporadic Task Duration (S ec)

Perceat Improvement

TO.00%

S poradic Duration vs Percent Improvement
R andom vs GAP)

EZEEERI Rodom —W—— AP

80.00%

60.00% 4
4000% 4
2000%4
00.00%4
-2000%.

~40.00%

-60.00%

-80.00%.

-100.00%

am

002 003 004 005 006 007 008 009 (1A}
Sporadic Task Duration (S ec)

Figure C.16: Optimistic-Duration Metric 2

C-18

S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - R ondom)

EEEEEEIR-A-PMen — B R-P-PMen

10000

05000
- 0.8000
§ » 07000
i § 06000
= 5 os00
$ & 04000
£ 8 03000
£ 02000 ; =

0.1000 T

ono00 | R bt

& D] 20 26 30 36
Sporadic Task Frequency (T asks /S ec) |
S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - GAP)
EEEESS eA-PMen —B—— GPPMen

10000

05000
w» 0.8000
& » 07000
F 4 06000
«» ® 08000
$ & 04000
£ 9 03000
¢ Hrgm

20 30
Sporadic T ask F requency (T asks /S ec)
Sporadic Frequency vs Percent Impsovement
(R andom vs GAP)
TS Radom —#— AP

I
“
s
H
i
M
[}
s
v
-9

20 25 30 35 40 a5 &0
Sporadic Task Frequency (T asks /S ec)

Figure C.17: Optimistic-Frequency Metric 2

C-19

Perceat Missed

10000

S poradic Response vs Percent Missed Deadines

(All-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen ——— R-P-PMecn

0.5000

0.8000

0.7000

0.6000

0.5000

04000

0.3000

001

’

002 008 004 005 006 007 008
Sporadic Task Response (S ec)

009 0.1

Percent Missed

10000

S poradic Response vs Percent Missed Deadines

(All-Or-Nothing vs P artid-S olution - GAP)

GAPMen ——l—— GP-PMeamn

05000

0.8000

08.7000

0.6000

05000

0.4000

Deadlines

0.3000

0.2000
0.1000

0.0000 -+

001

005 006 007 008
Sporadic Task Response (S ec)

009 01

Percest lmprovement

VOO0%X

S poradic Response vs Percent Improvement
(R andom vs GAP)

EEEEE Rordom ———— GAP

80.00%

60.00% «
4000%4

2000% 415

00.00% 4
-2000%

-4000%

-60.00%

-80.00%

-0 .00%.

001

002 008 004 006 006 007 008
Sporadic T ask Response (S ec)

009 0.1

Figure C.18: Optimistic-Response Metric 2

C-20

D.1 Description

This appendix presents tabular and graphicﬂ results from the unscheduled phase of the runtime
schedulability and robustness test. These results, which are referred to as the extended results, were
gathered in response to unexpected results during the scheduled (initial) phase of the runtime
schedulability and robustness test. The process used for gathering these resulté was identical to the
process used during the scheduled phase, with one exception. In the scheduled phase, all cyclic tasks were
modeled as partial-solution tasks. In the unscheduled phase, only cylic tasks with durations of 0.05
seconds or greater were modeled as partial-solution tasks, all others were modeled as all-or-nothing tasks.

This modification was made to determine the impact of a small amount of domain-knowledge (task

Appendix D - Extended Runtime Results

duration and executive resolution) on the performance of the partial-solution tasks.

Table D.1: Key

Metric 1
Metric 2
Metric 3
Metric 4

Average solution quality for cyclic tasks
Percent of missed deadlines for cyclic tasks
Average solution quality for sporadic tasks
Percent of missed deadlines for sporadic tasks

Improved quality or decreased missed deadlines
No change in quality or missed deadlines
Degraded quality or increased missed deadlines

woA|

Random task requirements
GAP task requirements
Both random and GAP task requirements

R-A-PMean
R-P-PMean
G-A-PMean
G-P-PMean

Mean value for cyclic all-or-nothing random tasks
Mean value for cyclic partial-solution random tasks
Mean value for cyclic all-or-nothing GAP tasks
Mean value for cyclic partial-solution GAP tasks

Results in this section are classified by task performance curve, test type, metric, and tasking

requirement. A short description of terms used in these results is provided in Table D.1. A written

summary of the results can be found in Chapter V.

D.2 Tabular Results

Table D.2: Extended Runtime Results

Cyclic-Quality
{(metric 1)

Cyclic-Deadlines
(metric 2)

Sporadic-Quality
(metric 3)

Sporadic-Deadlines
(metric 4)

Curve Test

+ ~ -

~ -

+ ~ -

-+ ~ -

Conservative | Duration

Frequency

Response

e] o] o]

Linear Duration

Frequency

Response

Optimistic | Duration

Frequency

Response

Random Total

GAP Total

a|olw|w|w|o|w|=

wiv|w|w|w|wiw |||+

(=] =]
(=] [e=]

wlolw|w|wiw|ww|w|w e

oo
[en] [l

wiv]w|w || |w]w|wiw

[==] L]
[[

LEFT BLANK

D-2

THIS SPACE INTENTIONALLY

D.3

Conservative Results - Metric 1

Task Selutien Quality

S poradic Durdion vs S olution Qudlity
(AH-Or-Nothing vs P artid-S olution - R andom)

R-APMen ——— R-P-PMen

om 002

008

004 006 006 007
Sporadic Task Duration (S ec)

[11s].]

009

0.1

Tash Solutiea Quality

S poradic Duration vs S olution Qudlity
(All-Or-Ncthing vs Partid-S olution - GAP)

GAPMen ——— GP-PMen

007
Sporadic Task Duration (S ec)

Perceat improvement

VO0O%

Sporadic Durdtion vs Percent Improvement

(R andom vs GAP)

BT Radom —E— AP

8000%

6000%

4000%

2000%

0000% 4
-2000%

~40.00%

-60.00%

-80.00%

-100.00%.

om 0.02

0038

004 006 006 007
Sporadic Task Duration (S ec)

008

009

0.1

Figure D.1: Conservative-Duration Metric 1

D-3

S poradic Frequency vs S olution Qudiiy
(All-Or-Nothing vs P artidl-S olution - R andom)

R-APMean ——— R-P-PMen

Tusk Selution Buality

20 26
Sporadic Task Frequency (T asks /S ec)

S poradic Frequency vs S olufion Qudlity
(All-Or-Ncthing vs P artid-S olution - GAP)

GAPMen —B—— GP-PMen

Sporcdic Task Frequency (Tasks /S ec)

S poradic Frequency vs Percent Improvement
(R andom vs GAP)

ESEEE Radom —W—— AP

DO00%
80.00%.
6000%
4000%
20.00%.

-20.00%.

-40.00%

-60.00%.

-80.00%.

-D0.00%

Percest Improvement

[D B 20 26 30 36 40 45 [¢]
Sporadic Task Frequency (T asks/Sec)

Figure D.2: Conservative-Frequency Metric 1

D-4

Task Solutisn Quality

S poradic R esponse vs S olution Qudlity
(All-Or-Nothing vs P arlid-S ofution - R andom)

R-A-PMenn ——— R-P-PMen

004 005 006 007
Sporadic Task Response (Sec)

S poradic Response vs S olution Qudlity
(All-Or-Nothing vs P crtid-S olution - GAP)

GA-PMen ——— GPPMem

006 007
Sporadic Task Response (S ec)

Perceat Improvement

DOOO%

S poradic Response vs Percent Improvement
(R andom vs GAP)

ETEE Radom —W— GAP

80.00%.

60.00%
40.00%

20.00%

00.00%4
-2000%.

-40.00%

-60.00%
-80.00%.

-1D0.00%

001

002 003 004 006 006 007 008
Sporadic Task Response (S ec)

009

0.1

Figure D.3: Conservative-Response Metric 1

D.4

Conservative Results - Metric 2

S poradic Durdlion vs Percent Missed Deadlines
(Al-Or-Nothing vs P artidl-S olution - R andom)
EEEEEZAR-APMen ——B—— RP-PMen
10000
05000
« 0.8000
? o 07000
§ 4 06000
* § 05000
$ $ 04000
[X-]
3
[
006 006
Sporedic Tosk Duration (S ec)
S poradic Duration vs Percent Missed Deadlines
(All-Or-Nothing vs Partid-S olution - GAP)
EEEEESl cAPMen — B GP-PMem
10000
05000
v 08000
2w 07000
i § 06000
" ® 08000
¢ § 04000
§ 9 03000 {p=
a 0.2000 -
0.100
00000
Sporadic Task Duration (S ec)
S poradic Durdlion vs Percent Improvement
(R andom vs GAP)
S Radom —— B GAP
DOOO%.
£ 8000%.
§ 6000%4
¢ 4000%4
$ 2000%4 o
& ooooxdE I R
< -2000%
$ -4000%
g -6000%
& -8000%.
.mmﬂ
001 002 008 0o4 006 006 007 008 009 0.1
Sporadic Task Durctlon (S ec)

Figure D.4: Conservative-Duration Metric 2

D-6

S poradic Frequency vs Peicent Missed Deadlines
(All-Or-Ncthing vs P artial-S olution - Random)
EEE=Eg R A-PMen — B R-P-PMen
10000
05000
o 0.8000
5 w 0.7000
5 § 06000
- 5 05000
5 n= 0.4000
= 8 0.3000 v =
T pm—r—— e
e meme e da e
o 1 20 26 30 % 40
Sporadic T ask Frequency (T asks /S ec)
S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artidl-S olution - GAP)
EEEEEN eA-PMen —B—— GP-PMen
10000
0.5000
9 0.8000
8 o 07000
i § 06000
% & 0800
5 g 04000
£ & 03000 %
& 02000 %
0.000 %
00000 -
20 26 30
Sporedic Task Frequency (T asks /S ec)
S poradic Frequency vs Percent Improvement
(R andom vs GAP)
EEEEE Radom —B—— AP
DO.00%
% 8000%4
§ 6000%
E 4000%
20.00%4
i 00.00%4
< -2000%.
8 -1000%
5 6000%
a -8000%
-0 .00%.
' D] 20 26 30 85 40 45 0
Sporadic Task Frequency (T asks /S ec)

Figure D.5: Conservative-Frequency Metric 2

D-7

10000
0.5000
0.8000
0.72000
0.6000
08000
04000
0.3000
0.2000

0.000
0.0000

Percest Missed
Deadlines

S poradic Response vs Percent Missed Deadlines
(All-Or-Nothing vs P aeticl-S olution - R andom)

R-A-PMen —8—— R-P-PMen

It el P WWM
001 002 008 004 006 006 007 008
Sporadic Task Response (S ec)

10000
0.5000
0.8000
0.7000
046000
0.8000
0.A4000
0.3000

Percest Missed
Deadlises

S poradic Response vs Percent Missed Deadiines
(All-Or-Nothing vs P articl-S olution - GAP)

GAPMen —B—— GP-PMen

e R s =
el biatie

004 005 006 007
Sporadic Task Response (S ec)

BOOO%

Sporadic Response vs Percent Improvement
R andom vs GAP)

EEESEE rodom —W— AP

80.00%

60.00%4
40.00% 4
2000%4
00.00% 4
-20.00%.

._.::bh..___‘z
EEEE

-4000%

-60.00%.

-80.00%

-00.00%

001 002 0038 004 006 006 007 008 009 01
Sporcdic Task Response (S ec)

Figure D.6: Conservative-Response Metric 2

D-8

D.5

Linear Results - Metric 1

Tusk Solatiea Quality

S poradic Durdtion vs S olution Qudlity
(All-Or-Nothing vs P artid-S olution - Random)

R-A-PMen —#——R-P-PMem

006 006 007
Sporadic Task Durcation (S ec)

S poradic Duration vs S olution Quadlity
(All-Or-Nothing vs Partid-S olution - GAP)

GAPMen —— GP-PMen

Sporadic T ask Duration (S ec)

>
j
¥
k]
“
-
"
»
-
008 006 007 008
Speoradic Task Duratlon (S ec)
S poradic Durdlion vs Percent improvement
(R andom vs GAP)
[Radom ——8—— cAp

00.00%
% 8000%
3 6000%
¥ wm(
3 2000%d
i 00.00%4 e o
< -2000%
¢ -4000%
§ -6000%
a -3000%

-D0.00%

001 002 003 0n04 006 006 007 008 009 0.1

Figure D.7: Linear-Duration Metric 1

Tash Solution Quality

S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs P artid-S olution - R andom)

R-APMen ——— R-P-PMem

25
Sporadic T ask Frequency (T asks /S ec)

Task Selation Quality

S poradic Frequency vs S olution Qudlity
(All-Or-Nothing vs Particl-S olution - GAP)

EEETE eAPMen — B GP-PMem

26

Sporadic T ask Frequency (T asks /S ec)

Perceat Improvement

DOO0%

S poradic Frequency vs Percent Improvement
(R andom vs GAP)

ST Radom ——— AP

80.00%

60.00%

=
V

40.00%

20.00%.
00.00% 4
-20.00%.

e | |y | o |

 EE

e

~

~40.00%
-60.00%.

-80.00%.

-100.00%.

0 B 20 26 30

35

Sporadic T ask F requency (T asks /S ec)

Figure D.8: Linear-Frequency Metric 1

D-10

Tash Selution Guality

S poradic Response vs S olution Qudlity
(All-Or-Nothing vs P artidl-S olution - R andom)

R-APMen ———— R-P-PMemn

-
T 2

006 006 007
Sporcdic Task Response (S ec)

Tash Solutisa @uality

Sporadic Response vs S olution Qudlity
(AR-Or-Nothing vs P artid-S olution - GAP)

GAPMen —B— GP-PMen

Sporadic Task Response (Sec)

Percest Inprovemest

V000%

S poradic Response vs Percent improvement

R andom vs GAP)

T Radom ——— GAP

80.00%:

60.00%
40.00%

2000%4
00.00% 4
-2000%

=

e el e et o

-40.00%

-$0.00%
-80.00%

-D0.00%.

[eJ0)]

002 ons 004 006 006 007
Sporadic Task Response (Sec)

008

009

0.1

Figure D.9: Linear-Response Metric 1

D-11

D.6 Linear Results - Metric 2

R-A-PMen —B—— R-P-PMen

S poradic Durction vs Percent Missed Deadliines
(All-Or-Nothing vs Partid-S olution - R andom)

Deadlines
o
B
8

Percent Missed

002 003 004 005 006 007 008
Sporadic T ask Duration (S ec)

a1

R GAPMen ——l— GP-PMen

S poradic Durdtion vs Percent Missed Deadines

Percent Missed
Dendlines

|
|
|
|
|
|
|
|
|
|
(All-Or-Nathing vs P artial-S olution - GAP)

006 006
Sporadic T ask Duration (S ec)

S poradic Durdlion vs Percent Improvement
R andom vs GAP)

EESEETS Rodom — W GAP

VOO0%
8000%

60.00% 4

4000%4
20.00%4
00.00% 4

e

-20.00%.
-40.00%.

-60.00%.

Percent Improvement

-80.00%.
-10.00%.

om 002 003 004 006 006 Qo7 [o]2]
Sporadic Task Duration (S ec)

009

Figure D.10: Linear-Duration Metric 2

D-12

Percent Missed

Deadlines

10000

0.8000
0.7000
046000
0.68000
0.4000
0.3000
0.2000
0.000
00000

S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S olution - R andom)

R-APMan —— R-PPMemn

20 26
Sporadic Task Frequency (T asks /S ec)

Perceat Missed

Deadlines

10000
0.9000
0.8000
0.7000
0.6000
0.8000
04000
0.3000
0.2000
0.100
0.0000

S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs Partidl-S olution - GAP)

GAPMen ——— GP-PMen

1

D B 20 26 30 36
Sporadic T ask Frequency (T asks /S ec)

Percent lnprovement

V000%

S poradic Frequency vs Percent Improvement
(R andom vs GAP)

ESEEEETE] Rodom —W—— AP

80.00%.

60.00%
4000%

—m

2000%4
00.00% 4

L

-2000%.
-4000%.

-6000%

-80.00%.

-10.00%

0 B 20 26 30 35 2
Sporadic Task Frequency (T asks /S ec)

Figure D.11: Linear-Frequency Metric 2

D-13

Percest Missed

10000

S poradic Response vs Percent Missed Deadines
(All-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen —8—— R-P-PMem

0.9000

0.8000

0.7000

05000

04000

0.3000

0.2000

0.100 +

00000 -

00

P

002 003 004 0086 006 007 008 009
Sporadic Task Response (S ec)

Percest Missed

10000

S poradic Response vs Percent Missed Deadines
(All-Or-Nothing vs P artid-S olution - GAP)

GAPMan —B— GP-PMen

0.9000

0.8000

0.7000

0.6000

08000

0.4000

0.3000

3
BR0c8%

002 008 004 006 006 007 008
Sporadic Task Response (S e¢)

Perceat inprovement

S poradic Response vs Percent Improvement
R andom vs GAP)

EEEEEETE Radom —— B GAP

om

002 0038 004 005 006 007 008 009 0.1
Sporadic Task Response (S ec)

Figure D.12: Linear-Response Metric 2

D-14

D.7

Optimistic Results - Metric 1

Task Solutiea Quality

S poradic Durdtion vs S olution Qudlity
(Detemministic vs lterative - R andom Periodic)

R-A-PMen — B R-P-PMen

Sporodic Task Durction (S ec)

S poradic Durdlion vs S olution Quadlity
(All-Or-Nothing vs P articl-S olution - GAP)

GA-PMen ———— GP-PMen

Lo
004 0086 007
Sporadic Task Duration (S ec)

Percent inprovement

S poradic Durdtion vs Percent Improvement
(R andom vs GAP)

BT Radom ————— GAP

0V000%

80.00%
60.00%

// ~ !

4000%4
23.00%4
00.00% 4
-2000%

e \I\

~4000%

-$0.00%

-80.00%

-100 00%.

001

002 008 004 Q056 006 007 008 009 01
Sporadic Task Duration (S ec)

Figure D.13: Optimistic-Duration Metric 1

D-15

S poradic Frequency vs S olufion Qudlity
(All-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen ——B—— R-P-PMecn

20 26 30 35
Sporedic T ask Frequency (T asks /S ec)

S poradic Frequency vs S olution Qudlity
(Alt-Or-Nothing vs Partiadl-S olution - GAP)

GA-PMen ——— GP-PMem

10000 1 ok W =]
£ 05000 1 i L =

0.8000
& 0.72000 4
¢ 0.6000
§ 04000 -
< 04000 -
% 0.3000 +
 0.2000 1
= 0.000 1

00000 +

Sporedic Task Frequency (T asks /S ec)
S poradic Frequency vs Percent Improvement
(R aondom vs GAP)
TSI Rordom ————Gap

5020
i B - =
_i @%g e e e E
" 6000
& -inog

-180 00!

-1B000!

[D B 20 26 s0 36 40 45 3]

Sporadic Task Frequency (T asks /S ec)

Figure D.14: Optimistic-Frequency Metric 1

D-16

Task Selution Guality

S poradic Response vs S olution Qudlity
(All-Or-Nothing vs P artidl-S olution - R andom)

R-APMen —B—— R-P-PMen

004 0056
Sporadic Task Response (5 ec)

006

Tash Soletion Quality

S poradic Response vs S olution Qudlity
(All-Or-Nothing vs Partid-S olution - GAP)

GA-PMen —W—— GP-PMen

op4

006

007

Sporadic Task Response (S ec)

Perceat Improvement

S poradic Response vs Percent Improvement

(R andom vs GAP)

EEE Radom ———— GAP

DO00%
80.00%.

60.00%

40.00% 4
2000%4
00.00% 4

-2000%
~40.00%.

-60.00%.

-80.00%.

-DO.00%:

o0l

002 003 004 005

0Ds

007

Sporadic Yask Response (S ec)

008 009 0.1

Figure D.15: Optimistic-Response Metric 1

D-17

D.8 Optimistic Results - Metric 2

S poradic Duration vs Percent Missed Deadines
(All-Or-Nothing vs P artidl-S olution - R andom)

R-APMen — T R-P-PMemn

Deadlines

Percent Missed

005 006 007 008
Sporadic T ask Duration (S ec)

S poradic Durdtion vs Percent Missed Deadines
(All-Or-Nothing vs P artid-S olution - GAP)

GAPMen —B—— GP-PMemn

10000
0.9000
0.8000
0.2000
0.6000
QH000
04000
0.3000 -
0.2000
0.100 +
00000 -

Percest Missed
Desdlines

005 a0s
Sporadic T ask Duratlon (S ec)

S poradic Duration vs Percent Improvement
(R andom vs GAP)

EEEER earom — WP

Bl

Perceat Improvement

001 002 003 004 006 006 007 008 009 0.1
Sporcdic Task Duration (S ec)

Figure D.16: Optimistic-Duration Metric 2

D-18

S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P artid-S ofution - R andom)

R-A-PMen ———— R-P-PMem

10000
05000
-« 08000
8 & 07000
5 _‘g' 06000
L % 0500
¢ $ 04000
£ = 03000
& 02000 ooy E
TR
o | Pl
L m———
5]] 20 26 30 36
Sporadic T ask Frequency (T asks /S ec)
S poradic Frequency vs Percent Missed Deadlines
(All-Or-Nothing vs P arlici-S olution - GAP)
EEEET 6A-PMen —B—— GP-PMen
10000
05000
- 0.8000
5 w 07000
¥ £ 045000
P
[
[¥-]
i d
-9
20 26 30 36
Sporadic Task Frequency (T asks /S ec)
S poradic Frequency vs Percent Improvement
(R andom vs GAP)
T Radom —— GAP
DOOO%
% 8000% =
; proyeion Sl =
Fraian
= -2000%
¢ 4000%
§ -6000%
& -8000%
-100.00%
5 D B 20 26 S0 3 40 45 ;4]

Sporadic T ask Frequency (T asks /S ec)

Figure D.17: Optimistic-Frequency Metric 2

D-19

Perceat Missed

Deadli

10000

S poradic Response vs Percent Missed Deadines
(All-Or-Nothing vs P artid-S olution - R andom)

R-A-PMen ——— R-P-PMen

0.5000

0.8000

0.7000
06000

05000

04000

0.3000
0.2000

0.1000 -

0.0000 -

om

002 003 004 008 007 008 009
Sporadic Task Response (5 ec)

Perceat Missed

Deadlines

S poradic Response vs Percent Missed Deadines
(All-Or-Nothing vs Partid-S olution - GAP)

ey GA-PMeen ——— GP-PMeacn

0.9000

0.8000
0.2000

04000

08000

0.4000

0.3000

0ns 004 006 006 007 0038 009 01
Sporadic Task Response (S ec)

Percent Improvement

Sporadic Response vs Percent Improvement
® andom vs GAP)

EESENN Radom ———— GAP

002 003 004 006 006 007 008 00 0.1
Sporadic Task Response (Sec)

Figure D.18: Optimistic-Response Metric 2

D-20

Appendix E - Group Runtime Results
E.1 Description

This appendix presents group results from the runtime schedulability and robustness tests.
Results are classified by result type (initial and extended), test type (duration, frequency, and response)
and tasking requirement (random and GAP).

The runtime schedulability and robustness test was divided into two phases, scheduled and
unscheduled. Results gathered during the scheduled phase of the test are referred to as the initial results.
Results gathered during the unscheduled phase of the experiment are referred to as the extended results.
The extended results were gathered in response to unexﬁected results during the scheduled phasé of the
runtime test. The process used for gathering these results was identical to the process used during the
scheduled phase, with one exception. In the scheduled phase, all cyclic tasks were modeled as partial-
solution tasks. In the unscheduled phase, only cyclic tasks with durations of 0.05 seconds or greater were
modeled as partial-solution tasks, all others were modeled as all-or-nothing tasks. This modification was
made to determine the impact of a small amount of domain-knowledge (task duration and executive

resolution) on the performance of the partial-solution tasks.

Table E.1: Key
Metric1 . |Average solution quality for cyclic tasks
Metric 2 Percent of missed deadlines for cyclic tasks
M-1-C Metric 1, Conservative Curve
M-1-L Metric 1, Linear Curve
M-1-0 Metric 1, Optimistic Curve
M-2-C Metric 2, Conservative Curve
M-2-L Metric 2, Linear Curve
M-2-0 Metric 2, Optimistic Curve

The purpose of the group performance increase graph is to allow visual comparison of the
potenﬁal benefit that may be obtained using the Conservative, Linear, and Optimistic performance curves.
In each case, these graphs suggest that best performance increase in solution quality, for partial-solution
tasks, can be achieved using tasks that accomplish most of their quality early during execution.

A short description of terms used in this section is provided in Table E.1. A written summary of

the results can be found in Chapter V.

E2

Initial Duration Results

Percent Improvement

Group Performance Increase - Duration
(R andom)

—B— M —A— ML ——MIO0 —K—wm2C — B —mM2L —FE —mMm20

0000%

80.00%

60.00%

40.00%

20.00%

00.00% —

-2000%

~-40.00% —.|~ T T
40.00%

Figure E.1: Initial Group Duration Results (Random)

Percent Improvement

Group Performance Increase - Duration
(GAP)

— B —MIC —A—MH —¢—MIO —K——M2C —M—M2L —F—M20

LO00%

VO00%

80.00%

60.00% 35

40.00%

20.00%

00.00%

-2000%

-4000% \ .

T
- WM
-8000% 5 J

Figure E.2; Initial Group Duration Results (GAP)

E.3 Initial Frequency Results

Group Performance Increcse - Frequency
(R andom)

— B —MIC —A—MH ——MIO —¥K—M2C —R— M2l

0VO00% T

80.00% 5

60.00%

40.00%

20.00%

00.00% —

Percent improvement

-20.00% e »

-4000%

-6000%

Figure E.3: Initial Group Frequency Results (Random)

Group Performance Increase - Frequency
(GAP)

M —A——MHL —O— MO —K—M2-C —W|—M2L —FH —Mm20

12000%

VO00%

80.00% & ; ks
40.00% B

20.00% / \ / \ .

00.00% 4

‘\;:;:.

Percent Improvement

-2000%

-40.00%

-6000%

Figure E.4: Initial Group Frequency Results (GAP)

E4

Initial Response Results

Percent Improvement

Group Performance Increase - Response
(R andom

——MIC A M —e— MO —K—M2-c —W—M2L —F—m20

V000%

80.00%

41

4
!
5

60.00%

40.00%

o S e e e

~4000%

-6000%

Figure E.5: Initial Group Response Results (Random)

Percent Improvement

Group Performance Increase - Response
(GAP)

M —A—MH —¢—MIO —K—mM2-C —F— ML —F—M20

2000%

VO00%

£0.00%

60.00%

40.00%

20.00%

00.00%

-2000%

~4000%

-60.00%

- Figure E.6: Initial Group Response Results (GAP)

E-4

ES

Extended Duration Results

Group Performmnce Increase - Duration
(R andom)

—— MC —A&—MH

——— M0 —K¥—M2C —P—M2L —F—mM2-0

VOOO%

80.00%

60.00%

40,00% 7+

20.00%

00.00%

Percent Improvement

-2000%

-4000%

-60.00%

Figure E.7: Extended Group Duration Results (Random)

Group Performance Increase - Duration
(GAP)

—#— M —aA——MH

—— MO —¥—M2-C — M2 —FE—M2-0

r000%

00.00%

80.00%

20.00% y

Percent lmprovement
5
8
z

00.00% &

-2000%

~4000%

Figure E.8: Extended Group Duration Results (GAP)

E.6

Extended Frequency Results

Group Performance Increase - Frequency

(R andom)
—&—— MK —A&—MH —¢—MHO —K—mM2C —P— M2t —FH—m0

©000%

00.00%
E 80.00%
$ s000x
-]
a
£
k-
8
L1
Q.

-2000%

-4000%

Figure E.9: Extended Group Frequency Results (Random)
Group Performance Increase - Frequency
(GAP)
—— M —A&——MH —e— MO —K—M2-C — R M2L M2-0

2000%

00.00%
‘.:, 80.00% Xf —g:
[] e
3 0% \/ = A N L.
E. ; X ¥ . 555 X
g8 40.00% s = 2 23
T 2000% 4
8
E 00.00% - A*PAT

-2000%

-4000%

Figure E.10: Extended Group Frequency Results (GAP)

E.7

Extended Response Resuits

Percent improvement

Group Performance Increase - Response
(R andom)

——— M —A—-MH —¢— MO —K——M2-C —PW—M2L —F—m20

00.00%

80.00%

60.00%

40.00% ¥

20.00%

cooox ————

-20.00%

-4000%

-6000%

Figure E.11: Extended Group Response Results (Random)

Percent Improvement

Group Performance Increase - Response
(GAP)

—— M — A M —— M0 —¥K—M2C —F— M2l —F—mM2-0

0O00%

80.00%

60.00% £

40.00%

20.00%

00.00% B ———— * » - ¥ » » 4

-2000%

~4000%

-4000%

Figure E.12: Extended Group Response Results (GAP)

Appendix F - Selected Source Code

F.1 Description
This appendix contains selected source code for the support software used during the pre-runtime
schedulability and maintainability demonstration and the runtime schedulability and robustness test. A

written description of the software can be found in Chapter IV.

F.2 Runtime Executive

F.2.1 Timer - Package Specification

-~ @(#) /usr/eng/rcaley/BRda/Scheduler/Cyclic/SCCS/s.timer.ads 1.4 94/08/62

package timer is

timer_period usec : constant integer := 10_000; -- 0.010000 seconds
alarms_per_second : constant integer := 100;

seconds_per_alarm : constant float = 0.01;

alarms : integer := 05

procedure abort_task;
procedure initialize_ task;
procedure set_timer;
procedure stop_timer;

end timer;

F.22 Timer - Package Body

with system; use system;

with os_signal; use os_signal;
with task_interface; use task_interface;
with resources;

with itimer;

with executive_task;
package body timer is

task sigalrm interrupt is
entry initialize task;
entry SIGALRM;
for SIGALRM use at address'ref (os_signal.SIGALRM);
pragma priority(resources.priority_sigalrm);
end sigalrm_interrupt;

task body sigalrm interrupt is
begin
accept initialize_task;

loop
accept SIGALRM do
select
executive task.executive.resume_task;
else

missed (EXECUTIVE_ID) := missed(EXECUTIVE ID) + 1;

end select;
attempted (EXECUTIVE_ID) := attempted(EXECUTIVE ID) + 1;

end SIGALRM;

alarms := alarms + 1;

set_timer;

end loop;
end sigalrm_ interrupt;

procedure initialize task is

begin
sigalrm_interrupt.initialize task;

end initialize task;

procedure set_timer is

newitimer : itimer.itimerval_rec;
olditimer : itimer.itimerval_ rec;
status : integer;

begin

itimer.fillitimer (newitimer, 0, 0, 0, timer period_usec);
status := itimer.setitimer(itimer.ITIMER REAL,
itimer.to_itimerval_ ptr(newitimer'address),
itimer.to_itimerval_ptr(olditimer'address));
end set_timer;

procedure stop timer is

newitimer : itimer.itimerval_rec;
olditimer : itimer.itimerval_rec;
status : integer;

begin

itimer.fillitimer (newitimer, 0, 0, 0, 0);
status := itimer.setitimer(itimer.ITIMER REAL,
itimer.to_itimerval_ptr(newitimer'address),
itimer.to_itimerval ptr(olditimer'address));
end stop_timer;

procedure abort_task is
begin

stop_timer;

abort sigalrm_interrupt;
end abort_task;

end timer;

F.2.3 Executive - Package Speciﬁcation

with resources;

package executive_task is
task executive is
entry initialize_task;
entry resume_task;
pragma priority(resources.priority_executive};
end executive;

procedure initialize task;
procedure resume_task;
end executive task;

F2.4 Executive - Package Body

-—@(#) /rem3/%4d/rcaley/Ada/Scheduler/Cyclic/SCCS/s.executive.adb 24/09/06

with Timer;

with system; use system;
with unix; use unix;

with os_time; use os_time;
with v_xtasking; use v_xtasking;
with text io; use text_io;
with calendar; use calendar;

with task_schedule; use task_schedule;
with task_interface; use task_interface;
with xcalendar;

with resources;

with sporadic_generator;

with sporadic_scheduler;

package body executive task is

procedure complete_task is

begin
task_interface.update_task(DISPLAY ID, TASK ABORT);
unix.sys_exit;

end complete_task;

procedure initialize_ task is
begin

executive.initialize_task;
end initialize_task;

procedure resume_ task is
begin

executive.resume_task;
end resume_ task;

task body executive is
begin
accept initialize_task;
Timer.set_timer;

for major_loop in 1l..task_interface.test_duration loop
schedule position := 1;
while schedule position <= schedule_length loop

accept resume_task;

sporadic_generator.generate_activation_list(sporadic_frequency);
sporadic scheduler.queue sporadic tasks;
sporadic_scheduler.resume_interrupted task;

~-~ Process Task Actions for Current Time Cycle
if (schedule(schedule position).num > 0) then
for action count in 1..schedule(schedule_position).num loop
task_interface.update_task(
schedule(schedule_position).actions(action_count).id,
schedule (schedule_position).actions(action count).action);
end loop;
end if;

sporadic_scheduler.schedule_sporadic_tasks;

time_used(running task) := time used(running_ task). +
timer.seconds_per alarm;
schedule position := schedule position + 1;
end loop; -- while
end loop; -- for

complete_ task;
end executive;
end executive_ task;

F.2.5 Generic_Task - Package Specification

~-@(#)/rem3/94d/rcaley/Ada/Scheduler/Cyclic/SCCS/s.generic.ads

94/09/23

with task_interface;

with system;

generic

id : task_interface.task_ id;

package generic task is

procedure task_abort;
procedure task_initialize;
procedure task_start;
procedure task stop;
procedure task resume;
procedure task_suspend;
procedure task_stopwork;

function get_task_id return system.task id;
function task completed return boolean;

end generic_tas

k;

F.2.6 Generic_Task - Package Body

——@ (#) /rem3/94d/rcaley/Ada/Scheduler/Cyclic/SCCS/s.generic.adb

94/09/23

with timer;

with task interface; use task interface;

with text_io;
with system;
with io package

use text_io;
use system;
; use io_package;

with v_xtasking;

with v_i_tasks;
with resources;

package body ge

task_id
completed
stopwork
suspended
reset
lcount
conservative
(0.0000,
0.0006,
0.0205,
0.5753,
linear
(0.0500,
0.3000,
0.5500,
0.8000,
optimistic
(0.0000,
0.4247,
0.9795,
0.9994,

neric task is

: system.task_id;

: boolean := TRUE;
: boolean := FALSE;
: boolean := FALSE;
: boolean := TRUE;

: integer := 1000;
: array (1..20) of float

0.0000, 0.0001, 0.0002, O.
0.0013, 0.0026, 0.0051, O.
0.0409, 0.0817, 0.1624, O.
0.8645, 0.9893, 0.9999, 1.

array (l1..20) of float

0.1000, 0.1500, 0.2000, O.
0.3500, 0.4000, 0.4500, O.
0.6000, 0.6500, 0.7000, O.
0.8500, 0.9000, 0.9500, 1.

: array (l1..20) of float

0.0000, 0.0001, 0.0105, O.
0.6836, 0.8376, 0.9183, 0.
0.9898, 0.9949, 0.9974, 0.
0.9997, 0.9998, 0.9999, 1.

F-4

0003,
0102,
3164,
0000);

2500,
5000,
7500,
0000);

1353,
9591,
9987,
0000) ;

task doit is

entry initialize_task;

entry start_next_cycle;

pragma priority(resources.priority worker);
end doit;

task body doit is

temp : integer := 1;
iteration : integer := 0;
begin
task_id := v_i_tasks.get_current_task;

accept initialize_task;

loop
accept start_next_cycle do
completed := FALSE;
stopwork = FALSE;
reset := TRUE;
iteration = 0;
loops (id) := 0;

quality(id) := 0.0;
end start_next_cycle;

while stopwork = FALSE loop
if reset then

reset := FALSE;

iteration := 0;

loops (id) := 0;

quality(id) := 0.0;
end if;

for count in 1..lcount 1ldop
if stopwork or reset then

exit;
end if;
temp := (temp + 1) mod 101;
loops (id) := loops(id) + 1;
end loop;
iteration := iteration + 1;
if ttype(id) = ITERATIVE_TASK then
quality(id) := conservative(iteration);
end if;

exit when iteration = 20;

end loop;

if (ttype(id) = ITERATIVE_TASK) then
if (iteration /= 0) then

quality(id) := conservative(iteration);
end if;
else
if (iteration = 20) then
quality(id) := 1.0;
end if;
end if;

completed := TRUE;

end loop;
end doit;

procedure task_initialize is
begin

doit.initialize_task;
end task_initialize;

procedure task_abort is
begin
abort doit;
if suspended then
v_xtasking.resume_task(task_id);
suspended := FALSE;
end if;
end task_abort;

procedure task_start is
fcount : float;

begin
fcount = durations(id) * float(loops_for_ second) / 20.0;
lcount = integer (fcount);
reset = TRUE;
loops (id) = 0;
quality(id) := 0.0;

if suspended then
v_xtasking.resume task(task_id);
suspended := FALSE;

end if;

if completed then
doit.start_next cycle;
end if;

status(id) task_interface.RUNNING;
attempted(id) := attempted(id) + 1;
end task_start;

1

procedure task stop is

begin’)

if completed then .
status(id) := task_interface.COMPLETED;

else
status (id) := task interface.SUSPENDED;
v_xtasking.suspend task(task_id);
suspended := TRUE;
missed(id) := missed(id) + 1;

end if;

tquality(id) := tquality(id) + quality(id);

tloops (id) :
end task_stop;

= tloops(id) + loops{(id);

procedure task_resume is
begin
if suspended then
v_xtasking.resume_task(task_id);
suspended := FALSE;
end if;

if completed then

status(id) := task_interface.COMPLETED;
else

status(id) := task_interface.RUNNING;
end if;

end task resume;

procedure task suspend is
begin
1f completed then
status(id) := task_interface.COMPLETED;
else
status(id) := task_interface.SUSPENDED;
v_xtasking.suspend task(task_id);
suspended := TRUE;
end if;
end task_suspend;

F.3

procedure task_stopwork is
begin
if (ttype(id) = ITERATIVE_TASK) and (not completed) then
stopwork := TRUE;
end if;
end task_stopwork;

function get_task_id return system.task_id is
begin

return task_id;
end get_task_id;

function task_completed return boolean is
begin

return completed;
end task_completed;

end generic_task;

Pre-Runtime Scheduler

F.3.1 schedule.lisp

Frrrrr v r R RN EREN RTINS FIF NI LIRN NN F NN FL NN LF NPT NIRRT NI FNFFFIIFFTIFIFFIIRS
;; File: schedule.lisp

NN NN NN A A e N N RN R R RN NN RN RN NN NN NN
;; Data Structures:

; system (processor processor Processor ...)

; processor (process process process ...)

; process (task duration processor)

; task (name duration pericd importance priority

; bodyin bodyout specin specout)

FFFIIFIITIIIRTFETFITNIRNIRILTIRRRIAII LN ILIILI R T III SN ITFISIIFIFIIIIIIIIIIY
Running the Program:

Print Sched - (print-schedule num_processors task task ... task)
Example: (print-schedule 1 tl t2 t3))

5

i

i

i

Vi

Vi

;7 Translate Sched - (translate-schedule num_processors task task ... task)
HH Example: (translate-schedule 1 tl t2 t3)

17

;+ Translation Output: Translations are currently stored in the Source
H directory.

i
rr
i
rrs

Template Files: Ada templates are currently stored in the Template
directory.

FEXTrFERTNIATLIN IR TN IFN TN NN FTINFIT AT LNV RF AN TN IIIIIFFIFFIINTIINITIIINY
;i Documentation: For additional information on rate monotonic scheduling
HH read:

i

i Levi, Shem-Tov and Ashok K. Agrawala, "Real-Time System Design,"

HH McGraw-Hill Publishing Company, 1990.

(A A A A A AN N A N A N A A A N N A A A A A A A A A A A A A A A A N A A AN A A A N A AN A A AN N B AN A A A A A AN A A AN A A N
(in-package "USER")
(provide "schedule")

(require "task")
(require "print")
(require "translate")

H
(defconstant MIN-PRIORITY 39)
(defconstant MAX-PRIORITY 30)

; e —_—

(defun print-schedule (num-processors &rest task-list)
(print-system (schedule-system num-processors task-list)))

(defun translate-schedule (num-processors &rest task-list)
(translate-system (schedule-system num-processors task-list)))

E-7

Scheduling Algorithm ~ These functions perform a depth first search
trying to create a schedule that contains all required tasks. First,
the task durations are sorted to guarantee that they are in

descending order. Next, the tasks are sorted by importance. This second
step is important, since it insure low-importance tasks are degraded
before high-importance tasks.

The algorithm walks through each required task, trying to find a

set of processor/task combinations that can be scheduled. It starts
by trying to schedule the maximum duration for the first task on the
first processor of the system. If it can't be scheduled on the first
processor, 1t tries the rest of the processors in turn. If the first
duration can't be schedule on any of the processors, it then

repeats the process with the next task duration. TIf no processor/
task/durations can be scheduled, the algorithm returns nil.

Once the first task is scheduled, the algorithm goes on to schedule
each additional task in turn. If at any point the system is unable to
schedule a task, it will backup to the previous task, try the next
task/processor/duration combination and then try to schedule the
failed task again. TIf the system is unable to schedule all tasks,

the algorithm will return nil.

We we We We We Wi Me We e We We We We We W& Ws We We W We we o We W

(defun schedule-system(num-processors task-list)
(let ((tlist (mapcar #'copy-task task-list)))
(assign—priorities (schedule-system—aux tlist num-processors))))

(defun schedule-system-aux(tlist num-processors)
(mapcar #'sort-task-duration tlist)
(mapcar #'(lambda(x) (set-task-priority x 0)) tlist)
(let ((system (build-system num-processors)))
(schedule-tasks (sort-tasks-by-importance tlist) system)))

(defun schedule-tasks(task-list system)
(cond ((null task-list) system)
(t (let ((children
(generate~children (first task-list) (length system))))
(schedule-children (rest task-list) children system)))))
(defun schedule-children(task-list children system)
(cond ((null children) nil)
(t (let ((new-system (update-processor (first children) system)))
(cond ((null new-system)
(schedule~children task-list (rest children) system))
(t (schedule-next-task task-list children system
new-system)))))))

(defun schedule-next-task(task-list children old-system new-system)
(let ((new-system (schedule-tasks task-list new-system)))
(cond ((null new-system)
(schedule-children task-list (rest children) old-system))
(t new-system)))) .

Functions for generating all process combinations for a particular

task. These functions create a process for each task-duration-processor
combination that can be supported by a particular task. A Example:

((TL 10 0) (T1 10 1) (T1 10 2) (T1 5 0) (T1 5 1) (T1 5 2))

The ordering of these children insures that first processors a

checked, and then reduced durations are checked.

e Ne We W N e we W

(defun generate-children(task num-processors)
(let ((children nil) (duration (task-duration task)))
(generate-children-aux task duration num-processors
nil num-~processors)))

(

(

i
’

’

(
(
(

.. N we

(

(

(

(

(

(

P R TR T TS

(

defun generate-children—-aux (task duration num-processors
children processor)
(cond ((null duration) children)
((not (equal processor '0))
(generate-children-aux
task
duration
NUM-pProcessors
(add-element-to-list
children (list task (first duration) processor))
(- processor 1)))
(t (generate-children-aux
task
(rest duration)
num-processors
children
num-processors))))

defun update-processor(task system &optional (pos 1))
(cond ((null system) nil)
((equal pos (get-processor task))
(let ((new (add-element-to-list (first system) task)))
(cond ((null (theoreml new)) nil)
(t (cons new (rest system))))))
(t (let ((new-system (update-processor task
(rest system) (+ pos 1))))
(cond ((null new-system) nil)
(t (cons (first system) new-system)))))))

Functions for Accessing Process Information

defun get-task (x) (first x))
defun get-duration(x) (second X))
defun get-processor(x) (third x))

Support Functions for the Scheduling Algorithm

defun add-element-to-list(l element)
(append 1 (list element)))

defun add-task~to-tasklist(l task)
(add-element-to-list 1 task))

defun sort-task-duration(task)
(setf (task-duration task) (sort (task-duration task) #'>)))

defun sort-tasks-by-importance(l)
(sort 1 #'> :key #'(lambda(x) (task-importance x))))

defun sort-processor-by-period(p) .
(sort p #'< :key #'(lambda(x) (task-period (get-task x)))))

defun build-system(x)
"Function for building system processor lists"
(let ((system (list nil)))

(dotimes (pos (- x 1) system) (setf system (cons nil system)))))

Functions for setting task priorities. These functions are

destructive in nature. They change the actual task structure, they do

not create a copy of the task.

defun set-task-priority(task priority)
(setf (task-priority task) priority))

defun assign-priorities(system)
(dolist (processor system system)

(when (not (null processor)) (assign-process-priorities processor))))

(defun assign-process—priorities(processor)
(let ((priority MAX-PRIORITY))
(dolist (process (sort-processor-by-period processor) t)
(when (not (null process))
(if (equal (get-duration process) 0.0)
(set-task-priority (get-task process) 0)
(set-task-priority (get-task process)
(incf priority)))))))

i
; Rate-Monotonic Scheduling Thereom 1

;
(defun utilization{task)
(/ (get-duration task) (task-period (get-task task))))

(defun max-utilization(n)
(* n (- (expt 2 (float (/ 1 n))) 1)))

(defun theoreml (1 &optional (u '0Q))
(theoreml-aux 1 u (max-utilization (length 1))))

(defun theoreml-aux(l u max)
(cond ((null 1) (if (< uw max) u nil))
(t (theoreml-aux (rest 1)
(float (+ u (utilization (first 1)))) max))))

F.3.2 tasklisp

AN NN NN N NN N NN N N SN N N N N NN RN R R N NN
;; File: task.lisp

PP PR R FF TR i FV iR iR i E i F R i i i i iiiiiiiiiiiiriiiiiiiiiiiiiiiiii
;; Description: This module is used by schedule.lisp to specify the

HH task structure and provide a default set of tasks

to be used in scheduling tests.

See Also: schedule.lisp, translate.lisp and print.lisp
R N R N R N N R R A RN N N R N R R NN N R RN N R NN RN NN NN
;s Data Structures:
HY system (processor processor processor ...)
HH processor (process process process ...)
M process (task duration processor)
i task (name duration period importance priority
HH bodyin bodyout specin specout)

TN N AR A A A I A A A A A A A A N A A A A A A A N A A A A A A A A N A A A AN N AN AN BN AN A A A A A B AN AN N AN AN AN AN AN AN AN N 4
(in-package "USER")
(provide "task")

(defstruct task (name nil)
(duration nil)
(period nil)
(importance 0)
(priority 0)
(bodyin "./Template/template.adb"™)
(bodyout "./Source/task_body.a")
(specin "./Template/template.ads")
(specout "./Source/task_spec.a"))

(setf t1
(make-task
:name 'Status Update
:duration '(0.0030)
tperiod '0.2000
:importance '1
:bodyout "./Source/taskl.adb"
:specout "./Source/taskl.ads"))

F-10

(setf t2
(make-task

:name 'Keyset
:duration '(0.0010)
:period '0.2000
:importance '3
:bodyout "./Source/task2.
:specout "./Source/task2.

(setf t3
(make-task

:name ‘'Hook Update
:duration '(0.0020)
:period '0.0650
:importance '1

:bodyout "./Source/task3.
:specout "./Source/task3.

(setf t4
(make-task

:name 'Graphic_Display
:duration '(0.0090)
:period '0.0800
simportance '3
:bodyout "./Source/task4.
:specout "./Source/taskd.

(setf tdm
(make—-task
:name 'Graphic_Display

adb"”
ads"))

adb"
ads™))

adb"
ads"))

:duration '(0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001)

:period '0.0800
:importance '3
:bodyout "./Source/task4.
:specout "./Source/task4.

(setf t5
(make-task
:name 'Stores_Update

:duration '(0.0010)
:period '0.2000
simportance '1

:bodyout "./Source/task5.
:specout "./Source/task5.

(setf t6
(make-task

:name 'Contact_Mgnt
:duration '(0.0050)
:period '0.0250
timportance '2

:bodyout "./Source/taské.
:specout "./Source/task6.

(setf t7
(make~-task

:name 'Target_Update I
:duration '(0.0050)
:period '0.0500
simportance 'l
:bodyout "./Source/task7.
:specout "./Source/task7.

(setf t8
(make-task

:name 'Tracking Filter
:duration '(0.0020)
:period '0.0250
:importance '1
:bodyout "./Source/task8.
:specout "./Source/task8.

adb"
ads"))

adb"
ads"))

adb"
ads"™))

adb"
ads"))

adb"
ads"™))

F-11

(setf t9
(make-task
:name 'Nav_Update
tduration '(0.0080)
:period '0.0590
:importance 'l
:bodyout "./Source/task9.adb"
:specout "./Source/task9.ads"))

(setf tl0
(make-task
:name 'Steering_Cmds
:duration '(0.0030)
:period '0.2000
:importance '1
:bodyout "./Source/taskl0.adb"
:specout "./Source/taskl0O.ads"))

(setf tl1
(make-task
:name 'Nav_Status
tduration '(0.0010)
tperiod '1.0000
:importance 'l
:bodyout "./Source/taskll.adb"
:specout "./Source/taskll.ads"))

(setf tl2
(make-task
:name 'Target Update_ II
:duration '(0.0050)
:period '0.1000
:importance '3
:bodyout "./Source/taskl2.adb"
:specout "./Source/taskl2.ads"))

(setf t13
(make-task
:name 'Status_Update II
:duration '(0.0010)
:period '1.0000
:importance 'l
:bodyout "./Source/taskl3.adb"
:specout "./Source/taskl3.ads"))

(setf tl-extra
(make—-task
:name 'Collision_ Monitor
:duration '(0.0003)
:period '0.200
:importance 'l
:bodyout "./Source/task23.adb"
:specout "./Source/task23.ads"))

(setf t2-extra
(make-task
:name 'Pilot Manager
:duration '(0.0081)
:period '1.000
simportance '1
:bodyout "./Source/task24.adb"
:specout "./Source/task24.ads"))

(setf t3-extra
(make-task
:name 'Tactical_Manager
:duration '(0.0269)
:period '1.000
rimportance '1
:bodyout "./Source/task25.adb"
:specin "./Template/itask.ads"
:specout "./Source/task25.ads"))

F-12

(setf td-extra
(make-task
:name 'EOB_Manager
:duration *(0.1331)
:period '1.000
:importance 'l
:bodyout "./Source/task26.adb"
:specin "./Template/itask.ads"
:specout "./Source/task26.ads"))

(setf tS-extra
{make-task
:name 'File Manager
:duration '(0.0026)
:period '1.000
:importance '1
:bodyout "./Source/task27.adb"
:gpecout "./Source/task27.ads"))

(setf té-extra
(make-task
:name 'Profile_Manager
:duration '(0.0013)
:period '1.000
:importance 'l
:bodyout "./Source/task28.adb"
:specout "./Source/task28.ads"))

(setf t7-extra
(make-task
:name 'IFF_Processor
:duration '(0.0010)
:period '1.000
:importance '1
:bodyout "./Source/task29.adb”
:specout "./Source/task29.ads"))

(setf t8-extra
(make-task
:name 'Waypoint_Sequencer
:duration '(0.0006)
:period '1.000
:importance 'l
:bodyout "./Source/task30.adb"
:specout "./Source/task30.ads"))

(setf t9-extra
(make-~task
:name 'Track Handler
sduration '(0.005)
:period '0.100
:importance '1
:bodyout "./Source/taskl9.adb"
:specout "./Source/taskl9.ads"))

(setf tl0-extra
{make-task
:name 'Track Manager
:duration '(0.0012)
:period '0.100
:importance 'l
:bodyout "./Source/task2l.adb"
:specout "./Source/task2l.ads"))

(setf tll-extra
(make~task
:name 'Response Manager
:duration '(0.0009)
:period '0.100
rimportance '1
:bodyout "./Source/task22.adb"
:specout "./Source/task22.ads"))

F-13

Bibliography

[Agrawala, 1994]. Agrawala, Ashok. Computer Science Department, University of Maryland, College
Park, Personal interview, 7 September 1994,

[Baker, 1989]. Baker, T.P., and Alan Shaw. "The Cyclic Executive Model and Ada," The Journal of
Real-Time Systems, 1:7-25, June 1989.

[Dodhiawala, 1988]. Dodhiawala, Rajendra and N. S. Sridharan. Real-Time Impact Report (RT-1 Impact
Analysis). MCAIR SDRL 10-1. Santa Clara, CA: FMC Corporation, Central Engineering
Laboratories, September 1988.

[Gschwendtner, 1992]. Gschwendtner, A. B. DARPA Neural Network Study. AFCEA Press, Fairfax,
Virginia., 1992.

[Hoogeboom, 1992]. Hoogeboom, Boudewijn and Wolfgang A. Halang, "The Concept of Time in the
Specification of Real-Time Systems." Real-Time Systems - Abstrations, Languages, and Design
Methodologies, edited by Krishna M. Kavi, 19-38, IEEE Computer Society, 1992.

[Locke, 1990]. Locke, C. Douglass, David R. Vogel, and Thomas J. Mesler. "Predictable Real-Time
Avionics Design Using Ada Tasks and Rendezvous: A Case Study." Ada Letters, X(9):118-120,
Fall 1990. ‘

[Locke, 1992]. Locke, C. Douglass. "Software Architecture for Hard Real-Time Applications: Cyclic
Executives vs Fixed Priority Executives,” The Journal of Real-Time Systems, 4:37-53, April 1992,

[Lin, 1973). Liu, C. L., and James W. Layland. "Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment," The Journal of the Association for Computing Machinery,
20(1):46-61, January 1973,

[Musliner, 1993]. Musliner, David J. and others. "CIRCA: A Cooperative Intelligent Real-Time Control
Architecture,” IEEE Transactions on Systems, Man, and Cybernetics, 23(6):1561-1573,
November/December 1993.

[Musliner, 1994]. Musliner, David J. and others. The Challenges of Real-Time Al. Technical Report,
University of Maryland, CS-TR-3290, June 1994,

[Raeth, 1994]. Raeth, P. G. WL/FIPA, Wright Laboratories, Flight Dynamics Directorate, Wright-
Patterson AFB, OH 45433, Personal interview, 24 Jan 1994.

[Shamsudin; 1991]. Shamsudin, Annie Z. and T. S. Dillion. T.S. NetManager: A Real-Time Expert
System for Network Traffic Management. Technical Report 15/91. Department of Computer
Engineering, La Trobe University, Bundoora, Victoria, Australia, December 1991.

[Stankovic, 1988]. Stankovic, John A. "Misconceptions About Real-Time Computing," IEEE Computer,
- 10-19, October 1988.

[Stankovic, 1990). Stankovic, John A. The Spring Architecture. Technical Report, Univérsity of
Massachusetts, UM-CS-1990-026, June 1990.

BIB-1

[Stankovic, 1993a]. Stankovic, John A. On the Reflective Nature of the Spring Kernel. Technical
Report, University of Massachusetts, UM-CS-1990-119, 1993.

[Stankovic, 1993b]. Stankovic, John A. Reflective Real-Time Systems. Technical Report, University of
Massachusetts, June 1993.

[Whelan, 1992]. Whelan, Michael Anthony. An Intelligent Real-Time System Architecture Implemented
in Ada. MS Thesis, AFIT/GCE/ENG/92D-12, Air Force Institute of Technology, School of
Engineering, Wright-Patterson AFB, OH, December 1992,

[Xu, 1991]. Xu, Jia and David Lorge Parnas. "On Satisfying Timing Constraints in Hard-Real-Time
Systems”, 132-146, November 1991.

BIB-2

Vita

Captain Robert E. J. Caley was born in London, England on 2 May 1964, At the age of twelve
he moved to the United States where he attended several high schools in New York, New Jersey, and
Massachusetts. After graduating from Walpole High School in 1981, at the age of seventeen, he
became an enlisted member of the United States Air Force. Three years as airman convinced Captain
Caley that he wanted to become an officer.

Captain Caley earned his United States citizenship in 1984. Following this, he was accepted as a
student at the Air Force Academy Preparatory school. One year later, he was a cadet at one of the most
prestigious universities in the country, the United States Air Force Academy.

In 1989, Captain Caley realized his dream of becoming an officer, when he graduated from the
Air Force Academy with a degree in computer science and a commission in the United States Air Force.
Upon graduation, Captain Caley was assigned to the Air Force Military Personnel Center (AFMPC),
Randolph AFB, TX, where he served as a software program analyst for Personnel Concept I (PC-IIT).

Captain Caley transferred to Wright-Patterson AFB, OH in May 1993, to attend the Air Force
Institute of Technology (AFIT) and earn a Master of Science (Computer Science). Following graduation,
Captain Caley will be assigned to the Air Intelligence Agency (AIA), where he will once again perform

duties as a software program analyst,

VITA-1

Form Approved

REPORT DOCUMENTAT‘ON PAGE OMB No. 0704-0188

PUBIC ~eDArT NG TLIZAN TAF TNis Suaction 3 NTarmatian 's S5UMated T avardge T ur Jer “esporse. -nciuding the ime TOr raviewing InStructions, searcming 2wsting data sources,
gathering ind ~maetHmng o

collecticn ot .ntnrmatlicn, nd
Davis Highway, Swite 1204 Ariegton, a4 22202-3302. and to the Othir2 37 Marsgement 5rd 3uaget 2aperwor Reduction Project i0704-0188), ‘Washingtan, 5C 20503,

2 13fa “eaded. ang (CMDIeNNd INd fBv ewing Ihe JLRariIn 3 ATOrmMAncn end comments regarging this burden 2stimate ar sny Sther aspect of this
LAINg suggestions "or reducing this Durger 2 Vase-rgIcn ~eaaquarters Services. Jirectarate for ntormation Operaticns ang Reports, 1215 efferson

. AGENCY USE ONLY Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1994 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Next-Generation Real-Time Systems:
Investigating the Potential of Partial-Solution Tasks

6. AUTHOR(S)

Robert E. J. Caley

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

i itute of Technol WPAFB OH 45433-6583
Air Force Institute of Technology, OH 45 AFIT/GCS/ENG,/94D-01

9. SPCNSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

Major Peter G. Raeth AGENCY REPORT NUMBER

WL/FIPA
Wright Laboratory, Flight Dynamics Directorate
Wright-Patterson AFB, OH 45433 ‘

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT ‘Maximum 200 words)

While the cyclic executive and fixed-priority scheduling strategies have been sufficient to handle traditional real-
time requirements. they are insufficient for dealing with the complexities of next-generation real-time systems.
New methods of intelligent control must be developed for guaranteeing on-time task completion for real-time
systems that are faced with unpredictable and dynamically changing requirements. Implementing real-time
processes as partial-solution tasks is one technique that may be beneficial. This type of task. when combined
with intelligent control, has the potential for increasing pre-runtime schedulability, system maintainability. and
runtime robustness. This research investigates the benefits of partial-solution tasks by experimentally measuring
the change in performance of 11 simulated real-time systems when converted from all-or-nothing tasks to partial-
solution tasks. Results from the experiments indicate that partial-solution tasks have the potential to decrease
niissed deadlines and increase a systems’ average solution quality. The results also suggest that best performance
gains can be achieved using Optimistic partial-solution tasks where the bulk of solution quality is achieved
early during task execution. The framework used in this research was developed to measure the general case
performance characteristics of partial-solution tasks. As a by-product, the research resulted in a framework that
can also be used to measure specific case characteristics.

15. NUMBER OF PAGEé

14. SYUBJECT TER
ﬁeaﬁ-&‘imehgsystems. Intelligent Control, Next-Generation Systems 135

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED - UL
NSN 7540-01-280-5300 Standard “orm 298 [Rev 2-89)
o 2.9

dragrmman u LN© o I

